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Figure 2:

Sketch of the 

time-resolved 

optical pump, x-

ray absorption 

probe 

experiment at 

the Ni L3

absorption edge 

(2p3/2 → 3d) 

with time delay 

∆t. [3] 

(modified).

Experimental & Theoretical Results

Time-resolved X-ray Absorption Spectroscopy (tr-XAS) [2]:

• Element-specific study of the unoccupied electronic states in pump-probe scheme

• Pump (optical laser): Excites electronic system

• Probe after ∆t (X-rays): Exciting core electrons into unoccupied electronic states

Spectroscopy and Coherent Scattering (SCS) Instrument of the European XFEL

[4,5,6,7]:

• Special transmission zone plate setup allows simultaneous measurement of ground 

state, pumped and reference signal

• Simultaneous measurement scheme, short monochromatic X-ray pulses, great time 

resolution and high repetition rate allow for previously unprecedent data quality
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Figure 4: (a) Ground state (□), pumped (•) and modelled (green line) absorption 

spectrum at ∆t = 0.4 ps. (b) Pump-induced change (■), the modelled result (green line) 

and the contribution of the shift (dashed)/broadening (dotted) [3] (modified).

• Modelling of ΔXAS with Spectral redshift (104±25 meV) and broadening (139±10 meV)

• Successful description with novel TDDFT calculations including electronic correlations

•The spectral redshift is a result of the influence of local electronic correlations 

on the spin-dependent electron dynamics in Nickel

Figure 6: (a) ∆XAS at the indicated time delays from experiment (markers) and TDDFT/ 

DFT calculations (lines). (b) Time-dependent ∆XAS at hν = 852.72 eV with a fit (green 

line) and the corresponding values from TDDFT (convoluted with a Gaussian of 80 fs 

FWHM) and DFT, as indicated. [3]

Figure 5: (a) Populated exchange-split DOS in fcc Ni calculated by TDDFT for majority (↑) and minority (↓) states before optical excitation (solid lines) 

and at ∆t = 74 fs (dashed lines). Static DOS without population is shown for comparison (dotted lines). (b) Absorption spectrum of the Ni L3 edge after 

optical excitation calculated by TDDFT using the transient f · DOS from panel (a) (left) and also including U = 3 eV (right). [3] (modified)
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Figure 3: Schematic depiction of the time-depend X-ray absorption spectroscopy measurement setup at the SCS instrument 

featuring the transmission zone plate with grating setup [4]. 

Time-dependent density functional theory:

• Calculating occupied DOS as 

𝑓(𝐸,𝑡)∙DOS(𝐸,𝑡) (Fig. 5 (a)):

• For Δt ≤ 74 fs: Increased occupation in 

3𝑑↓ (minority) channel, decreased 

occupation in 3𝑑↑ (majority) channel

➢ Induced spin currents → spin-flip 

transitions →  reduced 𝑚

• Calculating tr-XAS in general approach 

using:

➢ Reproduces only broadening (Fig 5 

(b))

• Introducing electronic correlations U using a 

single-band Hubbard model:

➢ Excitations of initial ground states 

𝝐𝒊 − 𝝐𝒋 which experiences spin 

flips have a shifted excitation 

energy by 𝐔 ∙ 𝐦

• Comparison with Experiment (Δt = 0.4 ps) 

(Fig. 6 (a)):

• For U = 0 Qualitative difference in 

shape, for U = 3 good agreement

➢ Inclusion of local correlations necessary 

to describe emergence of energy shift on 

ultrafast timescales

Main Question: What influence do electronic correlations have 

during nonequilibrium dynamics in 3d transition metals?

Scientific background:

• Local correlations play a role in the emergence of 

magnetic order in 3d transition metals [1]

• However: Role of local correlations during 

nonequilibrium dynamics not yet been fully revealed 

(influence on electron dynamics, effects of possible 

screening)

Synopsis: 

• Using femtosecond time-resolved X-ray absorption 

spectroscopy with time-dependent density functional 

theory we find that local Coulomb interactions influence 

the spin-dependent electron dynamics in fcc Nickel
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Experimental parameters:

• Pump: ℎ𝜈 = 1.5 eV, 35 fs duration and 

12 Τ𝑚𝐽 𝑐𝑚2 inc. fluence

• Probe: Transition from 2𝑝 Τ3 2 (2𝑝 Τ1 2) 

initial- → 3𝑑 final- states at the L3 (L2) 

edge
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Experimental results:

• At Δt = 0.4 ps (Fig. 4 (a/b)): ΔXAS has 

derivative-like shape (852 - 852.8 eV 

positive / 853 – 854 eV negative)

➢ Modelling shows spectral redshift    
(104 ± 25 meV) and broadening    

(139 ±10 meV)

• From 0.4 ps ≤ Δt ≤ 3.5 ps (Fig. 6 (a)): 

Induced change is reduced, shape is 

maintained

• L2 edge: ΔXAS energetically broader, 

resulting from larger lifetime broadening    

(Fig. 6 (a)) [8]

• Transient ΔXAS: fast initial excitation 

(within 200 fs) and subsequent decay 

over 1 ps

Density functional theory:

• For Δt ≥ 0.5 ps: Reproducing ΔXAS by 

calculation with elevated electronic 

temperature 𝑇𝑒 and reduced magnetic 

moment 𝜇

• Relaxation of elevated 𝑇𝑒 and 

reduced 𝜇 reproduces ΔXAS between 

0.5 ps ≤ Δt ≤ 3.5 ps (Fig. 6 (a,b))
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Figure 1: Schematic representation 

of local correlations between hot 

(excited) electrons and other d-

electrons
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