

Microscopic investigation of photodoping in the charge transfer insulator NiO using time-resolved X-ray absorption spectroscopy at the European XFEL

<u>T. Lojewski¹, D. Golez^{2,3}, K. Ollefs¹, L. Le Guyader⁴, L. Spieker¹, N. Rothenbach¹, R. Y. Engel⁵, P. S. Miedema⁵, M. Beye⁵, G. S. Chiuzbaian⁶, R. Carley⁴, R. Gort⁴, B. E. Van</u> Kuiken⁴, G. Mercurio⁴, J. Schlappa⁴, A. Yaroslavtsev^{4, 7}, A. Scherz⁴, F. Döring⁸, C. David⁸, H. Wende¹, U. Bovensiepen^{1,9}, M. Eckstein¹⁰, P. Werner¹¹ and A. Eschenlohr¹

1. Faculty of Physics and Center for Nanointegration Duisburg-Essen (CENIDE), University Duisburg-Essen 2. Jozef Stefan Institute 3. Faculty of Mathematics and Physics, University of Ljubljana 4. European XFEL GmbH 5. DESY Deutsches Elektronen-Synchrotron, DESY 6. Sorbonne Universite, CNRS, Laboratoire de Chimie Physique

7. Department of Physics and Astronomy, Uppsala University 8. Paul Scherrer Institut (PSI) **9.** Institute for Solid State Physics (ISSP), The University of Tokyo **10.** Institute of Theoretical Physics, University of Hamburg **11.** Department of Physics, University of Fribourg

UNIVERSITÄT D U I S B U R G E S S E N

Open-Minded

Motivation

Main Question: What influence do electronic correlations have during nonequilibrium dynamics in a charge-transfer insulator?

Scientific background:

- Electronic correlations play a large role in band formation and deciding between charge-transfer or Mott type behavior in insulators [1]
- Understanding role of electronic correlations during non-equilibrium dynamics could allow finetuning of material properties under optical excitation for specific applications

Synopsis:

Disentangling modifications at the Ni L_3 (L_2) edge and investigating effects of electronic correlations using GW plus embedded dynamical mean field theory (GW+EDMFT) calculations

Experimental Results

Experimental parameters:

- Pump: hv = 4.66 eV, 35 fs duration and 0.8 (dn = 0.9%) and $4.0 mJ/cm^2$ (dn = 4.7%)inc. fluence.
- Probe: Ni: $2p_{3/2}$ ($2p_{1/2}$) initial- $\rightarrow 3d$ finalstates at the L₃ (L₂) edge $I \circ Is$ initial- \rightarrow 2p final- states at the K edge.

Experimental results:

- At $\Delta t = 0.5$ ps (Fig. 3): ΔXAS has derivative-like shape (Ni L_3 :849 – 851.8 eV / O K: 1st peak 528.5 – 532 eV)
 - > Modelling (Fig. 4 (b)) shows spectral redshift and broadening

spectrum at $\Delta t = 0.5$ ps for the O K edge (left) and Ni L₃ edge (right), with Pumpinduced change () overlayed [3] (modified)

U_{cp} U_{cd} Core *Figure 1:* Schematic representation of electronic

correlations in an excited charge-transfer insulator

Relating additional modifications to variations in the ground state using a multiplet model

Methode & Setup

Time-resolved X-ray Absorption Spectroscopy (tr-XAS) [2]:

- Element-specific study of the unoccupied electronic states in pump-probe scheme
 - Pump (optical laser): Excites electrons from the lower to the upper Hubbard band (LHB/UHB)
 - Probe after Δt (X-rays): Exciting core electrons into unoccupied electronic states

Figure 2: Sketch of the time-resolved optical pump, x-ray absorption probe experiment at the Ni L₃ (2p3/2 \rightarrow 3d) and $O K (1s \rightarrow 2p)$ absorption edge with time delay Δt . [3] (modified).

- Not described: Ni L₃: Pre-edge feature/ O K: Reduced intensity at 2nd and 3rd peak
- Transient ΔXAS (Fig. 4 (a)): builds up within the first 2 ps and is maintained over longer time
- From 0.5 ps $\leq \Delta t \leq 10$ ps (Fig. 4 (b)): Shape and intensity maintained
- Redshift and broadening increase slightly with dn (Fig. 4 (c)) \rightarrow saturation region

GW plus embedded dynamical mean field <u>theory (GW+EDMFT) calculations (Ni L₃):</u>

- Energy shift from atomic cluster model: ΔE_{XAS}
- $= \left[\Delta U_{dd} + \Delta \epsilon_d + \Delta \epsilon_c + \Delta U_{cd}\right] + \left[\Delta N_p \left(U_{pd} U_{cp}\right)\right]$
 - 1. Screening of local coulomb interactions
 - 2. Nonlocal Coulomb interactions between photo-doped ligand holes and electrons (Hartree shifts)
- Calculated spectra from expended GW+EDMFT model show redshift (Fig. 6) (a,b))
 - > Both effects contribute to the redshift with the strength depending on the contribution of the Hartree shifts (U_{cp}) (Fig. 6 (c))

Spectroscopy and Coherent Scattering (SCS) Instrument of the European XFEL [4,5,6,7]:

- Special transmission zone plate setup allows simultaneous measurement of ground state, pumped and reference signal
- Simultaneous measurement scheme, short monochromatic X-ray pulses, great time resolution and high repetition rate allow for previously unprecedent data quality

Shift increases with photo-doping before saturation at 1% (Fig. 6 (c))

Two-band Hubbard model - multiplet <u>calculations (Ni L₃):</u>

- Multiplet description: Characterized by occupation of 3d band with initial state 2_h $(|\uparrow,\uparrow\rangle)$: two unpaired electrons in two bands
- Equilibrium XAS: main weight in multiplet from transitions $2_h \rightarrow \underline{3}_d (|\uparrow\downarrow,\uparrow\rangle)$
- Following photoexcitation: additional initial states available 2_l ($|\uparrow\downarrow,0\rangle$), 2_s ($|\uparrow,\downarrow\rangle$) and 1_d $(|\uparrow, 0\rangle)$, allowing for additional transitions
- Transition $2_l \rightarrow \underline{3}_d$ matches pre-edge feature (Fig. 7 (a,b))

Figure 5: (a) Time-dependent $\triangle XAS$ at Ni L₃ and O K edge with a fit (solid line). (b) Pump-induced changes ΔXAS at the indicated time delays from experiment (markers) with modelling for both edges and the corresponding values from modelling for both fluences (c)

Energy (eV) Energy (ev) Energy (ev)

Figure 3: Schematic depiction of the time-depend X-ray absorption spectroscopy measurement setup at the SCS instrument featuring the transmission zone plate with grating setup [4].

Acknowledgements & References

We acknowledge European XFEL in Schenefeld, Germany, for provision of X-ray freeelectron laser beamtime at the SCS instrument and thank the staff for their assistance. Funded by the Deutsche Forschungsgemeinschaft (DFG, German Research Foundation) through Project No. 278162697 - SFB 1242. UB, PW, and ME acknowledge support from the Deutsche Forschungsgemeinschaft (DFG, German Science Foundation) through FOR 5249-449872909 (Project P6). D.G. acknowledges the support by the program No. P1-0044 and No. J1-2455 of the Slovenian Research Agency (ARRS).

T. L. performed the experiments and analyzed the data. D. G. did the calculations. Both contributed equally to this work.

References:

[1] J. Zaanen, G. A. Sawatzky, and J. W. Allen, Phys. Rev. Lett. 55, 418 (1985). [2] P. Willmott, An Introduction to Synchrotron Radiation, Wiley (2011) [3] T. Lojewski, D. Golez et al. arXiv:2305.10145 (2023) [4] L. Le Guyader et al. Journal of Synchrotron Radiation 30, 284 (2023) [5] T. Tschentscher, et al., Applied Sciences 7, 592 (2017). [6] W. Decking et al., Nature Photon. 14, 391 (2020). [7] P.M. Echenique et al., Chemical Physics 251, 1–35 (2000)

Contact: tobias.lojewski@uni-due.de

SFB

1242

Figure 6: (a) Pumped and unpumped absorption spectra calculated from GW+EDMFT with corresponding ΔXAS in panel (b). (c) Values of energy shift and narrowing for different photodoping

Conclusion

• Modelling of ΔXAS shows a spectral redshift as large contribution to induced changes at the Ni L_{2.3}-edge

 Redshift dependents on electronic correlations as screening of local correlation and Hartree shifts depend on correlation effects of d and p electrons resp. •Ni L₃ pre-edge feature indicates photoinduced Hund excitation with a larger contribution of the new initial state $2_1(|\uparrow\downarrow, 0\rangle)$

Figure 7: (a) Un-pumped (\Box), pumped (•) and modelled (green line) absorption spectrum at $\Delta t = 0.5$ ps for the O K edge (left) and Ni L_3 edge (right), with Pump-induced change (*II*) overlayed [3] (modified)