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2 Hierarchy of correlations [1] 
• Systematic expansion in inverse powers of coordination number  
•  Correlations from reduced density matrices , i.e.,  
•  Von-Neumann equation and split up of correlations 

•Mean-field state  without correlations provides the hierarchy 

•Linearization around mean-field to first order yields dynamics of quasi-particles
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8 Conclusions & Outlook 
• Hierarchy of correlations facilitates iterative scheme to solve von-Neumann equation 

•  Linearization around mean-field background gives effective dynamics of quasi-particles 

•  Single Mott-semiconductor interface reflection like electrodynamics impedance mismatch 

•  Transmission through Mott layer through bands and tunnelling current inbetween 

•  Destructive interference  of particle and hole channel results in vanishing current at 

 in the middle of the Mott band gap 

Outlook 
➡ Include higher order correlations 

➡ Do different structures to build, e.g., energy filters 

➡ Different mean-field backgrounds give different dispersion relations and hence different 

E = U/2

1 Introducmon 
• Understanding strongly correlated systems is grand challenge of theoremcal physics 
• Strongly and weakly interacmng parmcles usually described by different methods  
• How to describe a heterostructure thereof while keeping spamal resolumon? 
‣ Hierarchy of correlamons is a way to solve for the one-site, two-site etc. density operator [1] 
• Here: discrete lapce model of solids that provides a mathemamcal descripmon of systems 

with a well-defined amount of electronic correlamons

3 Fermi-Hubbard model & system 
• Mott-insulator (strongly correlated) &semiconductor (weakly correlated) 

•  Fermi-Hubbard Hamiltonian: Hopping  , Coulomb repulsion  and on-site potential  

•   used to distinguish Mott and semiconductor 
•  Mott insulator at half-filling                                       semiconductor valence (conduction) band 

                              

                                              

•  Effective particle  and hole  operators 

•  Assume hypercubic lattice  

•  Factorization  

•  Fourier transform parallel to interface 
•  Effective equations describing quasi-particle modes
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4 Mott insulator & semiconductor 

•Plane wave ansatz  in regions of constant  

Mott                                                                                  Semiconductor 

‣                                

‣                                 

‣ finite for                                                   

‣  

•Divergence in the middle of the Mott gap suggest strong suppression of tunnelling
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6 Double interface 
•Mott insulator between two semiconducting leads 
•Transmission given by 

•Tunnelling probability approximated by 

•Current vanishes in the middle of Mott gap . Why? E = U/2

Transmission probability through the 
upper Hubbard band (dotted lines) over 
the energy of the incoming wave E/U
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•Inside Mott bands 
transmission channels 

•Tunnelling inbetween 
•Resonances κMott ⋅ π = zd

jtrans
n

jin
n

≈ 4e−2dκMott(1 − e−2κMott)2(1 − cos(κsemi))2 e−κMott ≈
4T(E − U/2)

ZU2

7 Understanding vanishing tunnelling current  
•  Three-site toy model with second order process amplitude  and  [3] 

•  Up spin  needs to pass either  or  

•Coherent sum of these two possibilites:  for  

•The mean-field background  of the Mott is a sum over  rows 

•Probability falls as  and  

•Destructive interference of particle and hole channel in the middle of the Mott gap 
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•  give the analytical formula with 
perturbation theory amplitudes 

•  show numerically obtained 
transmission probabilty using the full 
Hamiltonian 

•  uses amplitudes from the Zeno 
limit by analytical solution of the von-
Neumann equations of the creation/
annihilation operators with the full 
Hamiltonian 

➡ Destructive interference of particle 
and hole current [2]
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5 Single interface - Reflection and Transmission 

•Incoming wave from Mott  

•  hole contributions dominate,  particle contributions dominate 

•Analogous to impedance mismatch:  for  
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Transmission probability for different 
semiconductor 
potentials  over the energy of the incoming 
wave 
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•Semiconductor band edge needs to 
fall inside the Mott bands (dashed 
lines)

↑ ↑ ↑ ↑ ↑↑→ →T T

↑ ↑ ↑→ →T T↓ ↓ ↓

T↑ = T2/V

T↓ = − T2/(U − V )


