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2 Hierarchy of correlations [1]

• Systematic expansion in inverse powers of coordination number 

•  Correlations from reduced density matrices , i.e., 

•  Von-Neumann equation and split up of correlations


•Mean-field state  without correlations provides the hierarchy


•Linearization around mean-field to first order yields dynamics of quasi-particles
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8 Conclusions & Outlook

• Hierarchy of correlations facilitates iterative scheme to solve von-Neumann equation


•  Linearization around mean-field background gives effective dynamics of quasi-particles


•  Single Mott-semiconductor interface reflection like electrodynamics impedance mismatch


•  Transmission through Mott layer through bands and tunnelling current inbetween


•  Destructive interference  of particle and hole channel results in vanishing current at 

 in the middle of the Mott band gap


Outlook

➡ Include higher order correlations


➡ Do different structures to build, e.g., energy filters


➡ Different mean-field backgrounds give different dispersion relations and hence different 

E = U/2

1 Introduction

• Understanding strongly correlated systems is grand challenge of theoretical physics

• Strongly and weakly interacting particles usually described by different methods 

• How to describe a heterostructure thereof while keeping spatial resolution?

‣ Hierarchy of correlations is a way to solve for the one-site, two-site etc. density operator [1]

• Here: discrete lattice model of solids that provides a mathematical description of systems 

with a well-defined amount of electronic correlations

3 Fermi-Hubbard model & system

• Mott-insulator (strongly correlated) &semiconductor (weakly correlated)


•  Fermi-Hubbard Hamiltonian: Hopping  , Coulomb repulsion  and on-site potential 


•   used to distinguish Mott and semiconductor

•  Mott insulator at half-filling                                       semiconductor valence (conduction) band


                             


                                             


•  Effective particle  and hole  operators


•  Assume hypercubic lattice 


•  Factorization 


•  Fourier transform parallel to interface

•  Effective equations describing quasi-particle modes
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4 Mott insulator & semiconductor


•Plane wave ansatz  in regions of constant 


Mott                                                                                  Semiconductor


‣                               


‣                                


‣ finite for                                                  


‣ 


•Divergence in the middle of the Mott gap suggest strong suppression of tunnelling
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6 Double interface

•Mott insulator between two semiconducting leads

•Transmission given by


•Tunnelling probability approximated by


•Current vanishes in the middle of Mott gap . Why?
E = U/2

Transmission probability through the 
upper Hubbard band (dotted lines) over 
the energy of the incoming wave E/U
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•Inside Mott bands 
transmission channels


•Tunnelling inbetween

•Resonances κMott ⋅ π = zd
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7 Understanding vanishing tunnelling current 

•  Three-site toy model with second order process amplitude  and  [3]


•  Up spin  needs to pass either  or 


•Coherent sum of these two possibilites:  for 


•The mean-field background  of the Mott is a sum over  rows


•Probability falls as  and 


•Destructive interference of particle and hole channel in the middle of the Mott gap
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•  give the analytical formula with 
perturbation theory amplitudes


•  show numerically obtained 
transmission probabilty using the full 
Hamiltonian


•  uses amplitudes from the Zeno 
limit by analytical solution of the von-
Neumann equations of the creation/
annihilation operators with the full 
Hamiltonian


➡ Destructive interference of particle 
and hole current [2]
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5 Single interface - Reflection and Transmission


•Incoming wave from Mott 


•  hole contributions dominate,  particle contributions dominate


•Analogous to impedance mismatch:  for  
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Transmission probability for different 
semiconductor

potentials  over the energy of the incoming 
wave 

V
E/U

•Semiconductor band edge needs to 
fall inside the Mott bands (dashed 
lines)
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