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1 Introduction 6 Double interface

e Understanding strongly correlated systems is grand challenge of theoretical physics e Mott insulator between two semiconducting leads
e Strongly and weakly interacting particles usually described by different methods e Transmission given by

ow to describe a heterostructure thereof while keeping spatial resolution? jrans o= Kemid(] _ oi2KY(] _ o 2semi)
ierarchy of correlations is a way to solve for the one-site, two-site etc. density operator [1]
ere: discrete lattice model of solids that provides a mathematical description of systems

with a well-defined amount of electronic correlations | I
' § Transmission probability through the

upper Hubbard band (dotted lines) over
the energy of the incoming wave E/U
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2 Hierarchy of correlations [1] 0.8 o
e Systematic expansion in inverse powers of coordination number 1/Z 06 } T * Inside Mott bands
« Correlations from reduced density matrices p,,, = tr, (), i.e., P, = Py + DD, % g ; transmi.ssio.n channels
. . . ~ @ e Tunnelling inbetween
e VVon-Neumann equation and split up of correlations 0.4 : - p
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o Mean-field state pﬂ without correlations provides the hierarchy 0.2 J
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e Linearization around mean-field to first order yields dynamics of quasi-particles
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3 Fermi-Hubbard model & system I o de=2vn(] — o= 2w2(1 — cos(k )P e~ 4T(EZ UzU 12)
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e Mott-insulator (strongly correlated) &semiconductor (weakly correlated)
e Current vanishes in the middle of Mott gap £ = U/2. Why?

e Fermi-Hubbard Hamiltonian: Hopping T/w' Coulomb repulsion U and on-site potential Vﬂ
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Z,; Lo+ 2, U ;‘ g 7 Understanding vanishing tunnelling current
e U, Vused to distinguish Mott and semiconductor
e Mott insulator at half-filling semiconductor valence (conduction) band e Three-site toy model with second order process amplitude 7" and T* [3]
=(|T)ﬂ(T| |i)ﬂ(l|)/2 ,52: Tl)M(Tl| (|O)ﬂ(0|) e Up spin T needs to pass either T or | @l@l@
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o Effective particle Cplm and hole Cga operators T” ®_®_©_>®_©_®_>Q_®_® =17V
o Assume hypercubic lattice T° = 10 ] | V . .
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e Fourier transform parallel to interface
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e Effective equations describing quasi-particle modes Coherent sum of these two possibilites: 7' + T* = 0 for V= U/2
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4 Mott insulator & semiconductor i
e Probability falls as Py(V = U/2) x 1/Nand Py, = |TT + TV | /4

Plane wave ansatz p’ = a'e™ + fle~™ in regions of constant U, V o , , _
’ p” b ® e Destructive interference of particle and hole channel in the middle of the Mott gap
Mott Semiconductor o P\, give the analytical formula with 5
: . 1075 &
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Z [EU-E) ” P ory ampiit 10-56.) /1
COS Knforr = = [V— E-T ] o Wy, show numerically obtained E =
> k _
2T | E-U/2 2T . . . 107 _
- - transmission probabilty using the full N =
1 - Hamiltonian 1077 ¢
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5 (U I+ \/U T Tk> E=V-1I . Trﬁn uses amplitudes from the Zeno =
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limit by analytical solution of the von-lO_11 i pN;
-~ | k[ finite for U — oo | x| o In(V) Neumann equations of the creation/ - : Wo |
vk — oo forE=U/2 annihilation operators with the full 0_13 5 Tl
Hamiltonian 107 0.2 0.4 0.6 0.8 1

e Divergence in the middle of the Mott gap suggest strong suppression of tunnelling

= Destructive interference of particle
and hole current [2]

5 Single interface - Reflection and Transmission 8 Conclusions & Outlook
p/? 1 o | | e Hierarchy of correlations facilitates iterative scheme to solve von-Neumann equation
o ' — KMot H — IKnpou M
Incoming wave from Mott <E — U) [e + Re ] e Linearization around mean-field background gives effective dynamics of quasi-particles

P.) VE*+(E-U)

e ' =~ 0 hole contributions dominate, E ~ U particle contributions dominate

e Single Mott-semiconductor interface reflection like electrodynamics impedance mismatch

1 — exp{—i(Kyjoy — Kerni)} e Transmission through Mott layer through bands and tunnelling current inbetween
R =— : T=WN2E-U)1+R)
1 - eXp{ Z(KMott + Ksemi)}

e Destructive interference of particle and hole channel results in vanishing current at

e Analogous to impedance mismatch: R = 0 for Ky = Keemni E = U/2 in the middle of the Mott band gap
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08 - V=W i ! potentials V over the energy of the incoming = Include higher order correlations
0.6 /\ o V=15v ::' T Y = Do different structures to build, e.g., energy filters
i | ;' L . Different mean-field backgrounds give different dispersion relations and hence different
04 | L e Semiconductor band edge needs to
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