

Combined first principles and many-body theory modelling of x-ray absorption spectra of bulk MgO and SrTiO₃

DUISBURG ESSEN

UNIVERSITÄT

Offen im Denken

V. Begum-Hudde¹, M. E. Gruner¹, C. Vorwerk², T. Lojewski¹, N. Rothenbach¹, B. Eggert¹, C. Draxl², A. Eschenlohr¹, K. Ollefs¹, and R. Pentcheva¹ ¹Faculty of Physics and Center for Nanointegration, University of Duisburg-Essen, Duisburg ²Institute für Physik and IRIS Adlershof, Humboldt-Universität zu Berlin, Germany

Abstract

O K edge in MgO^[1]

We present a comprehensive study of the x-ray absorption spectra (XAS) in two paradigmatic oxides - MgO and SrTiO₃, from first-principles calculations. The spectra are calculated by including the quasiparticle corrections with G_0W_0 (MgO) / within the independent particle approximation (SrTiO₃), followed by the excitonic effects by solving the Bethe-Salpeter Equation (BSE). Our results show that inclusion of the electron-(core)hole interactions with BSE is integral to describe the spectra accurately. The simulated XAS spectra for the O K edge in MgO [1], and in SrTiO₃ [2] are in excellent agreement with experiment w.r.t. the spectral shape and peak positions. The theoretical Ti- $L_{2,3}$ edge[2] is concurrent with experiment w.r.t. the energetic positions of the four-peak structure stemming from the crystal-field splitting due to the Ti octahedral coordination in SrTiO₃. We also analyze the origin of prominent peaks and identify the orbital character of the relevant contributions by projecting the e-h coupling coefficients from the BSE eigenvectors on the band structure. The real-space projection of the wave functions for the lowest energy exciton of the O K-edge shows a strong localization (MgO), whereas a two-dimensional spread in the x-y plane is observed for SrTiO₃.

positions of the three prominent peaks at ~ 537, 546, and 557 eV is obtained only after the $G_0 W_0$ +BSE corrections,

@ 557.2 eV: CB with energies > 25 eV (O 3p and

Mg 3p, e_a) along X – W – K – Γ .

Real-space analysis of 1st bound exciton: O K edge in SrTiO₃^[2] and MgO^[1]

1st bound exciton @ 503.73 eV, E_{B} = 468 meV, (a) transitions to CBM, delocalized along $\Gamma - X$, M - $\Gamma - R$, (b and c) excitonic wave function spreads up to three unit cells with distinct two-dimensional character and maximum intensity near Ti-sites, and hybridization of the Ti t_{2g} and O p states.

1st bound exciton @ 534.5 eV, E_B = 691 meV, (a) transitions delocalized along L – Γ – X and K – Γ , (b) the spread is confined to two-three unit cells with s and p character near O sites and s-like near Mg sites

O K edge and Ti $L_{2,3}$ edge in SrTiO₃^[2]

Method	References	Acknowledgment
 Electronic properties: Exchange-correlation functional- PBEsol XAS spectrum: Independent particle approximation Many-body effects within <i>GW</i> (single-shot <i>G</i>₀<i>W</i>₀) and BSE Codes: VASP, exciting (Nitrogen) and Wannier90 	 ^[1] Begum <i>et al.</i>, Physical Review B 103, 195128 (2021), ^[2] Begum-Hudde <i>et al.</i>, Physical Review Research 5, 013199 (2023), ^[3] Luches <i>et al.</i>, Physical Review B 69, 045412 (2001), ^[4] Palina <i>et al.</i>, Physical Chemistry Chemical Physics, 18, 13844 (2016), ^[5] de Groot <i>et al.</i>, Physics and Chemistry of Minerals 19, 140 (1992). 	 Funding through Deutsche Forschungsgemeinschaft Project No. 278162697 (CRC1242), Project No. 322462997 (MUMAGI II), and computation time through Grants No. INST 20876/209-1 FUGG and No. 520 INST 20876/243-1 FUGG at magnitUDE is acknowledged. C. V. and C. D. appreciate funding from Leibniz- ScienceCampus GraFOx.