Error analysis of a finite difference method on graded meshes for a time-fractional diffusion equation

Martin Stynes

Beijing Computational Science Research Center, China

AANMPDE10

Paleochora, Crete, Greece

2–6 October 2017
Joint work with

José Luis Gracia, University of Zaragoza, Spain
Eugene O’Riordan, Dublin City University, Ireland

Research supported in part by the National Natural Science Foundation of China under grants 91430216 and NSAF U1530401
Talk overview

The PDE and the behaviour of its solution

Finite difference method on a uniform mesh

Finite difference method on a graded mesh
Outline

The PDE and the behaviour of its solution

Finite difference method on a uniform mesh

Finite difference method on a graded mesh
Fractional-derivative PDE (initial-boundary value problem)

\[Lu := D_t^\alpha u - p \frac{\partial^2 u}{\partial x^2} + r(x)u = f(x, t) \]

for \((x, t) \in Q := (0, l) \times (0, T]\), with

\[
\begin{align*}
 u(0, t) &= u(l, t) = 0 \text{ for } t \in (0, T], \\
 u(x, 0) &= \phi(x) \text{ for } x \in [0, l],
\end{align*}
\]

where \(D_t^\alpha u\) is a Caputo fractional derivative of order \(\alpha \in (0, 1)\),

\(p\) is a positive constant,

the functions \(r, f\) are continuous on \(\bar{Q} := [0, l] \times [0, T]\)

with \(r(x) \geq 0\) for all \(x\),

and \(\phi \in C[0, l]\).
The fractional derivative

\(D_t^\alpha g(x, t) := \frac{1}{\Gamma(1 - \alpha)} \int_{s=0}^{t} (t - s)^{-\alpha} \left(\frac{\partial g}{\partial t} \right) (x, s) \, ds\)

for \((x, t) \in Q\).

The derivative definition is *not* local (unlike classical derivatives).

Fact: if \(g \in C^1(\bar{Q})\), then

\[
\lim_{\alpha \to 1^-} \left[D_t^\alpha g(x, t) \right] = g_t(x, t) \quad \text{for each} \ (x, t) \in Q.
\]
Example (part 1)

Example. Consider the fractional heat equation

$$D_t^\alpha v - \frac{\partial^2 v}{\partial x^2} = 0 \quad \text{on } (0, \pi) \times (0, T]$$

with initial condition $v(x, 0) = \sin x$

and boundary conditions $v(0, t) = v(\pi, t) = 0$.

Its solution is

$$v(x, t) = E_\alpha(-t^\alpha) \sin x \quad \text{for } (x, t) \in [0, \pi] \times [0, 1],$$

where the *Mittag-Leffler function*

$$E_\alpha(z) := \sum_{k=0}^{\infty} \frac{z^k}{\Gamma(\alpha k + 1)}.$$

M-L function is fractional analogue of the exponential function:

$$D_t^\alpha E_\alpha(\lambda t^\alpha) = \lambda E_\alpha(t^\alpha).$$
Plot of surface \(v(x, t) \) and its cross-section at \(x = \pi/2 \) when \(\alpha = 0.3 \).
An initial layer in \(v \) at \(t = 0 \) is evident.
In this Example, one has \(\text{[recall that } 0 < \alpha < 1] \)

\[
\begin{align*}
 v_t(x, t) &\approx Ct^{\alpha - 1} \sin x \text{ as } t \to 0^+, \\
v_{tt}(x, t) &\approx Ct^{\alpha - 2} \sin x \text{ as } t \to 0^+,
\end{align*}
\]

while

\[
\left| \frac{\partial^i v(x, t)}{\partial x^i} \right| \leq C \text{ for } i = 0, 1, 2, 3, 4 \text{ and all } (x, t) \in \bar{Q}.
\]
Regularity of the solution u (part 1)

Return to our problem

$$Lu := D_t^\alpha u - p \frac{\partial^2 u}{\partial x^2} + r(x)u = f(x, t).$$

— uses separation of variables to prove existence and uniqueness of a classical solution to this problem
— i.e., a function u whose derivatives exist and satisfy the PDE and the initial-boundary conditions pointwise
— under some extra hypotheses on the data
Regularity of the solution u (part 2)

Can extend results of those papers to show that

$$\left| \frac{\partial^i u(x, t)}{\partial x^i} \right| \leq C \text{ for } i = 0, 1, 2, 3, 4 \text{ and all } (x, t) \in \bar{Q}. $$

and

$$\left| \frac{\partial^j u(x, t)}{\partial t^j} \right| \leq Ct^{\alpha-j} \text{ for } j = 1, 2 \text{ and all } (x, t) \in Q$$

Here and subsequently, C denotes a generic constant that depends only on the data $\alpha, p, r, f, \phi, l, T$.

These bounds are sharp: they agree with the behaviour of our earlier example

$$v(x, t) = E_{\alpha}(-t^\alpha) \sin x \text{ for } (x, t) \in [0, \pi] \times [0, 1].$$
You can’t assume too much regularity!

Consider the time-fractional heat equation

\[D_t^\alpha v - \frac{\partial^2 v}{\partial x^2} = 0 \quad \text{on } (0, \pi) \times (0, T] \]

with initial condition \(v(x, 0) = \phi(x) \in C^2[0, 1] \)
satisfying \(\phi(0) = \phi(\pi) = 0 \) and \(v(0, t) = v(\pi, t) = 0 \).

If one assumes that \(v_t(x, t) \) is continuous on \([0, \pi] \times [0, T] \), then

one must have \(v \equiv 0 \).

You can’t assume too much regularity!

Consider the time-fractional heat equation

\[D_t^\alpha v - \frac{\partial^2 v}{\partial x^2} = 0 \quad \text{on } (0, \pi) \times (0, T] \]

with initial condition \(v(x, 0) = \phi(x) \in C^2[0, 1] \)
satisfying \(\phi(0) = \phi(\pi) = 0 \) and \(v(0, t) = v(\pi, t) = 0 \).
If one assumes that \(v_t(x, t) \) is continuous on \([0, \pi] \times [0, T]\), then

one must have \(v \equiv 0 \).

You can’t assume too much regularity!

Consider the time-fractional heat equation

\[D_t^\alpha v - \frac{\partial^2 v}{\partial x^2} = 0 \quad \text{on } (0, \pi) \times (0, T) \]

with initial condition \(v(x, 0) = \phi(x) \in C^2[0, 1] \)
satisfying \(\phi(0) = \phi(\pi) = 0 \) and \(v(0, t) = v(\pi, t) = 0 \).

If one assumes that \(v_t(x, t) \) is continuous on \([0, \pi] \times [0, T]\) then

one must have \(v \equiv 0 \).

You can’t assume too much regularity!

Consider the time-fractional heat equation

\[D_t^\alpha v - \frac{\partial^2 v}{\partial x^2} = 0 \quad \text{on} \ (0, \pi) \times (0, T) \]

with initial condition \(v(x, 0) = \phi(x) \in C^2[0, 1] \)
satisfying \(\phi(0) = \phi(\pi) = 0 \) and \(v(0, t) = v(\pi, t) = 0 \).

If one assumes that \(v_t(x, t) \) is continuous on \([0, \pi] \times [0, T]\), then

one must have \(v \equiv 0 \).

Outline

The PDE and the behaviour of its solution

Finite difference method on a uniform mesh

Finite difference method on a graded mesh
Uniform mesh, spatial discretisation

Let M and N be positive integers. Set

\[x_n := nh \quad \text{for } n = 0, 1, \ldots, N \text{ with } h := l/N, \]
\[t_m := m\tau \quad \text{for } m = 0, 1, \ldots, M \text{ with } \tau := T/M. \]

Computed approximation to the solution at each mesh point (x_n, t_m) is denoted by u^m_n.

u_{xx} is discretised using a standard approximation:

\[\frac{\partial^2 u}{\partial x^2}(x_n, t_m) \approx \delta_x^2 u^m_n := \frac{u^m_{n+1} - 2u^m_n + u^m_{n-1}}{h^2}. \]
Discretisation in time

The Caputo fractional derivative

\[D_t^\alpha u(x_n, t_m) = \frac{1}{\Gamma(1 - \alpha)} \sum_{k=0}^{m-1} \int_{s=t_k}^{t_{k+1}} (t_m - s)^{-\alpha} \frac{\partial u(x_n, s)}{\partial t} \, ds \]

is approximated by the so-called L1 approximation

\[D_M^\alpha u_m^n := \frac{1}{\Gamma(1 - \alpha)} \sum_{k=0}^{m-1} \frac{u_n^{k+1} - u_n^k}{\tau} \int_{s=t_k}^{t_{k+1}} (t_m - s)^{-\alpha} \, ds \]

\[= \frac{\tau^{-\alpha}}{\Gamma(2 - \alpha)} \left[d_1 u_n^m - d_m u_n^0 + \sum_{k=1}^{m-1} (d_{k+1} - d_k) u_n^{m-k} \right], \]

with \(d_k := k^{1-\alpha} - (k - 1)^{1-\alpha} \) for \(k \geq 1 \).

Here \(d_1 = 1, \ d_k > d_{k+1} > 0, \) and

\((1 - \alpha)k^{-\alpha} \leq d_k \leq (1 - \alpha)(k - 1)^{-\alpha}. \)
The scheme

Thus we approximate the IBVP by the discrete problem

\[L_{N,M}u^m_n := D^\alpha_M u^m_n - p \delta_x^2 u^m_n + r(x_n)u^m_n = f(x_n, t_m) \]

for \(1 \leq n \leq N - 1, 1 \leq m \leq M;\)

\[u^m_0 = 0, \quad u^m_N = 0 \quad \text{for } 0 < m \leq M, \]

\[u^n_0 = \phi(x_n) \quad \text{for } 0 \leq n \leq N. \]

Properties of discrete system

At each time level,

- Must solve a tridiagonal linear system; matrix is an M-matrix so scheme satisfies a discrete maximum principle.
- Have to use computed solutions at all previous time levels
Previous numerical analysis: a criticism

—In our discussion of convergence, we consider only the discrete L^∞ norm—

There exist papers (e.g., Liu, Zhang & Burrage 2012) that consider problems and discretisations like ours, and prove $O(h^2 + \tau^{2-\alpha})$ convergence of the numerical method, under the hypothesis that the solution u of the original problem is in $C^{4,2}(\bar{Q})$—which is satisfied only for very special data!

We are interested in proving a convergence result under the realistic hypothesis that $u \in C^{4,0}(\bar{Q})$ with

$$\left| \frac{\partial^{\ell} u}{\partial t^\ell} (x, t) \right| \leq C(1 + t^{\alpha-\ell}) \quad \text{for } \ell = 0, 1, 2.$$
Previous numerical analysis: a criticism

—In our discussion of convergence, we consider only the discrete L^∞ norm—

There exist papers (e.g., Liu, Zhang & Burrage 2012) that consider problems and discretisations like ours, and prove $O(h^2 + \tau^{2-\alpha})$ convergence of the numerical method, under the hypothesis that the solution u of the original problem is in $C^{4,2}(\bar{Q})$—which is satisfied only for very special data!

We are interested in proving a convergence result under the realistic hypothesis that $u \in C^{4,0}(\bar{Q})$ with

$$\left| \frac{\partial^\ell u}{\partial t^\ell} (x, t) \right| \leq C(1 + t^{\alpha-\ell}) \quad \text{for } \ell = 0, 1, 2.$$
Numerical evidence

Numerical experiments with our simple but typical first Example

\[v(x, t) = E_\alpha(-t^\alpha) \sin x \quad \text{for } (x, t) \in [0, \pi] \times [0, 1], \]

show that for our numerical method one obtains \(O(h^2 + \tau^\alpha) \) convergence, not the \(O(h^2 + \tau^{2-\alpha}) \) that occurs only for unrealistically smooth solutions.
Truncation error; convergence of scheme

Temporal truncation error: one can show (a bit long and messy) that

\[|D_M^\alpha u(x_n, t_m) - D_t^\alpha u(x_n, t_m)| \leq Cm^{-\alpha}. \]

Also need to sharpen stability estimate of Liu, Zhang & Burrage 2012.

Theorem

For \(m = 1, 2, \ldots, M \) the solution \(u^m_n \) of the scheme satisfies

\[\max_{(x_n, t_m) \in \bar{Q}} |u(x_n, t_m) - u^m_n| \leq C(h^2 + \tau^\alpha). \]

Numerical experiments show that this bound is sharp.
Outline

The PDE and the behaviour of its solution

Finite difference method on a uniform mesh

Finite difference method on a graded mesh
Let M and N be positive integers. Set

$$
x_n := nh \quad \text{for} \quad n = 0, 1, \ldots, N \quad \text{with} \quad h := l/N,
$$

$$
t_m := T(m/M)^r \quad \text{for} \quad m = 0, 1, \ldots, M
$$

with mesh grading $r \geq 1$ chosen by the user.

Set $\tau_m = t_m - t_{m-1}$ for $m = 1, 2, \ldots, M$.

Computed approximation to the solution at each mesh point (x_n, t_m) is denoted by u^m_n.

u_{xx} is discretised as before.
Discretisation in time

The Caputo fractional derivative

\[D_t^\alpha u(x_n, t_m) = \frac{1}{\Gamma(1-\alpha)} \sum_{k=0}^{m-1} \int_{s=t_k}^{t_{k+1}} (t_m - s)^{-\alpha} \frac{\partial u(x_n, s)}{\partial t} \, ds \]

is again approximated by the L1 approximation (but now the mesh is nonuniform in time)

\[D_M^\alpha u^m_n := \frac{1}{\Gamma(1-\alpha)} \sum_{k=0}^{m-1} \frac{u_{n}^{k+1} - u_{n}^{k}}{\tau_{k+1}} \int_{s=t_k}^{t_{k+1}} (t_m - s)^{-\alpha} \, ds \]

\[= \frac{1}{\Gamma(1-\alpha)} \sum_{k=0}^{m-1} \frac{u_{n}^{k+1} - u_{n}^{k}}{\tau_{k+1}} \left[(t_m - t_k)^{1-\alpha} - (t_m - t_{k+1})^{1-\alpha}\right] \]
Lemma (temporal truncation error)

There exists a constant C such that for all $(\mathbf{x}_m, t_n) \in Q$ one has

$$|D_N^\alpha u(\mathbf{x}_m, t_n) - D_t^\alpha u(\mathbf{x}_m, t_n)| \leq Cn^{-\min\{2-\alpha, r\alpha\}}.$$

Also need to prove new discrete stability result (delicate).

Lemma (stability of L1 scheme)

For $n = 1, 2, \ldots, N$ one has

$$\|u^n\|_\infty \leq \|u^0\|_\infty + \tau_n^\delta \Gamma(2 - \delta) \sum_{j=1}^{n} \theta_{n,j} \|f^j\|_\infty$$

where $\theta_{n,n} = 1$ and $\theta_{n,j} = \sum_{k=1}^{n-j} \tau_{n-k}^\delta (d_{n,k} - d_{n,k+1}) \theta_{n-k,j}$

for $n = 1, 2 \ldots, N$ and $j = 1, 2, \ldots, n - 1.$
Convergence on graded meshes

Theorem

The solution \(u_m^n \) of the scheme satisfies

\[
\max_{(x_m, t_n) \in \bar{Q}} |u(x_m, t_n) - u_m^n| \leq CT^\alpha \left(h^2 + N^{-\min\{2-\alpha, r\alpha\}} \right).
\]

Hence: for \(r \geq (2 - \alpha)/\alpha \), the rate of convergence is \(O(h^2 + N^{-(2-\alpha)}) \).

Numerical experiments show our theorem is sharp.
Reference

Future work

- Alternative discretizations of the fractional derivative?
- Some alternative way of dealing with the weak singularity at $t = 0$?
- Two spatial dimensions?
- etc. etc.
Thank you for your attention 😊

Mini-symposium on

Numerical methods
for fractional-derivative problems and applications

organised by Anatoly Alikhanov, Raytcho Lazarov & Martin Stynes