On Maxwell’s and Poincaré’s Constants

by

Dirk Pauly

SM-UDE-772 2013
ON MAXWELL’S AND POINCARÉ’S CONSTANTS

Dirk Pauly

autumn 2013

Dedicated to Sergey Igorevich Repin on the occasion of his 60th birthday

Abstract

We prove that for bounded and convex domains in three dimensions, the Maxwell constants are bounded from below and above by Friedrichs’ and Poincaré’s constants. In other words, the second Maxwell eigenvalues lie between the square roots of the second Neumann-Laplace and the first Dirichlet-Laplace eigenvalue.

Key Words Maxwell’s equations, Maxwell constant, second Maxwell eigenvalue, electro statics, magneto statics, Poincaré’s inequality, Friedrichs’ inequality, Poincaré’s constant, Friedrichs’ constant

Contents

1 Introduction 1
2 Preliminaries 2
3 The Maxwell Estimates 6
A Appendix: The Maxwell Estimates in Two Dimensions 12

1 Introduction

It is well known that, e.g., for bounded Lipschitz domains \(\Omega \subset \mathbb{R}^3 \), a square integrable vector field \(v \) having square integrable divergence \(\text{div} \, v \) and square integrable rotation vector field \(\text{rot} \, v \) as well as vanishing tangential or normal component on the boundary \(\Gamma \), i.e, \(v_t|_{\Gamma} = 0 \) resp. \(v_n|_{\Gamma} = 0 \), satisfies the Maxwell estimate

\[
\int_{\Omega} |v|^2 \leq c_n^2 \int_{\Omega} (|\text{rot} \, v|^2 + |\text{div} \, v|^2),
\]

(1.1)

if in addition \(v \) is perpendicular to the so called Dirichlet or Neumann fields, i.e.,

\[
\int_{\Omega} v \cdot w = 0 \quad \forall w \in \mathcal{H}(\Omega),
\]
Dirk Pauly

where

\[
\mathcal{H}(\Omega) = \begin{cases}
\mathcal{H}_D(\Omega) := \{ w \in L^2(\Omega) : \text{rot} w = 0, \text{div} w = 0, w_{\Gamma} = 0 \}, & \text{if } v_{\Gamma} = 0, \\
\mathcal{H}_N(\Omega) := \{ w \in L^2(\Omega) : \text{rot} w = 0, \text{div} w = 0, w_{\text{n}} = 0 \}, & \text{if } v_{\text{n}} = 0 \end{cases}
\]

holds. Here, \(c_m \) is a positive constant independent of \(v \), which will be called Maxwell constant. See, e.g., [19, 20, 13, 25]. We note that (1.1) is valid in much more general situations modulo some more or less obvious modifications, such as for mixed boundary conditions, in unbounded (like exterior) domains, in domains \(\Omega \subset \mathbb{R}^N \), on \(N \)-dimensional Riemannian manifolds, for differential forms or in the case of inhomogeneous media. See, e.g., [10, 15, 17, 20, 21, 22, 25, 26].

So far, to the best of the author’s knowledge, general bounds for the Maxwell constants \(c_m \) are unknown. On the other hand, at least estimates for \(c_m \) from above are very important from the point of view of applications, such as preconditioning or a priori and a posteriori error estimation for numerical methods.

In this contribution we will prove that for bounded and convex domains \(\Omega \subset \mathbb{R}^3 \)

\[
c_{p,o} \leq c_m \leq c_p \leq \frac{\text{diam}(\Omega)}{\pi}
\]

holds true, where \(0 < c_{p,o} < c_p \) are the Poincaré constants, such that for all square integrable functions \(u \) having square integrable gradient \(\nabla u \)

\[
\int_{\Omega} |u|^2 \leq c_{p,o}^2 \int_{\Omega} |\nabla u|^2 \quad \text{resp.} \quad \int_{\Omega} |u|^2 \leq c_p^2 \int_{\Omega} |\nabla u|^2
\]

holds, if \(u_{\Gamma} = 0 \) resp. \(\int_{\Omega} u = 0 \). While the result (1.2) is already well known in two dimensions, even for general Lipschitz domains \(\Omega \subset \mathbb{R}^2 \) (except of the last inequality), it is new in three dimensions. We note that the last inequality in (1.2) has been proved in the famous paper of Payne and Weinberger [18], where also the optimality of the estimate was shown. A small mistake in this paper has been corrected later in [3]. We will prove the crucial and from the point of view of applications most interesting inequality \(c_m \leq c_p \) also for polyhedral domains in \(\mathbb{R}^3 \), which might not be convex but still allow the \(\text{H}^1(\Omega) \)-regularity for solutions of Maxwell’s equations. We will give a general result for non-smooth and inhomogeneous, anisotropic media as well, and even a refinement of (1.2). Let us note that our methods are only based on elementary calculations.

2 Preliminaries

Throughout this paper let \(\Omega \subset \mathbb{R}^3 \) be a bounded Lipschitz domain. Many of our results hold true under weaker assumptions on the regularity of the boundary \(\Gamma := \partial \Omega \). Essentially we need the compact embeddings (2.3)-(2.5) to hold. We will use the standard Lebesgue spaces \(L^2(\Omega) \) of square integrable functions or vector (or even tensor) fields equipped with the usual \(L^2(\Omega) \)-scalar product \(\langle \cdot, \cdot \rangle_{\Omega} \) and \(L^2(\Omega) \)-norm \(|\cdot|_{\Omega} \). Moreover, we will work with the standard \(L^2(\Omega) \)-Sobolev spaces for the gradient \(\text{grad} = \nabla \), the rotation
rot = ∇× and the divergence div = ∇· denoted by

\[
\begin{align*}
H^1(\Omega) & := H(\text{grad}; \Omega), & \tilde{H}^1(\Omega) & := \hat{H}(\text{grad}; \Omega) := C^\infty(\Omega), \\
D(\Omega) & := H(\text{div}; \Omega), & \tilde{D}(\Omega) & := \hat{H}(\text{div}; \Omega) := C^\infty(\Omega), \\
\mathcal{R}(\Omega) & := H(\text{rot}; \Omega), & \tilde{\mathcal{R}}(\Omega) & := \hat{H}(\text{rot}; \Omega) := C^\infty(\Omega).
\end{align*}
\]

In the latter three Hilbert spaces the classical homogeneous scalar, normal and tangential boundary traces are generalized, respectively. An index zero at the lower right corner of the latter spaces indicates a vanishing derivative, e.g.,

\[
\tilde{R}_0(\Omega) := \{ E \in \tilde{\mathcal{R}}(\Omega) : \text{rot } E = 0 \}, \quad D_0(\Omega) := \{ E \in D(\Omega) : \text{div } E = 0 \}.
\]

Moreover, we introduce a symmetric, bounded \((L^\infty)\) and uniformly positive definite matrix field \(\varepsilon : \Omega \to \mathbb{R}^{3\times3}\) and the spaces of (harmonic) Dirichlet and Neumann fields

\[
\mathcal{H}_{\varepsilon}(\Omega) := \tilde{R}_0(\Omega) \cap \varepsilon^{-1}D_0(\Omega), \quad \mathcal{H}_{\varepsilon}(\Omega) := R_0(\Omega) \cap \varepsilon^{-1}\tilde{D}_0(\Omega).
\]

We will also use the weighted \(\varepsilon\)-\(L^2(\Omega)\)-scalar product \(\langle \cdot, \cdot \rangle_{\Omega,\varepsilon} := \langle \varepsilon \cdot, \varepsilon \cdot \rangle_{\Omega}\) and the corresponding induced weighted \(\varepsilon\)-\(L^2(\Omega)\)-norm \(| \cdot |_{\Omega,\varepsilon} := | \cdot |_{\Omega}^{1/2} \). Moreover, \(\perp\) denotes orthogonality with respect to the \(\varepsilon\)-\(L^2(\Omega)\)-scalar product. If we equip \(L^2(\Omega)\) with this weighted scalar product we write \(L^2_{\varepsilon}(\Omega)\).

We have the following compact embeddings:

\[
\begin{align*}
\tilde{H}^1(\Omega) \subset H^1(\Omega) \hookrightarrow L^2(\Omega) & \tag{Rellich’s selection theorem} \quad (2.3) \\
\tilde{\mathcal{R}}(\Omega) \cap \varepsilon^{-1}\tilde{D}(\Omega) \hookrightarrow L^2(\Omega) & \tag{tangential Maxwell compactness property} \quad (2.4) \\
\mathcal{R}(\Omega) \cap \varepsilon^{-1}D(\Omega) \hookrightarrow L^2(\Omega) & \tag{normal Maxwell compactness property} \quad (2.5)
\end{align*}
\]

It is well known and easy to prove by standard indirect arguments that (2.3) implies the Poincaré estimates

\[
\begin{align*}
\exists c_{p,\varepsilon} > 0 \quad \forall u \in \tilde{H}^1(\Omega) & \quad |u|_{\Omega} \leq c_{p,\varepsilon} |\nabla u|_{\Omega}, \quad (2.6) \\
\exists c_p > 0 \quad \forall u \in H^1(\Omega) \cap \mathbb{R}^+ & \quad |u|_{\Omega} \leq c_p |\nabla u|_{\Omega}. \quad (2.7)
\end{align*}
\]
Furthermore
\[
c_{p,\varepsilon}^2 = \frac{1}{\lambda_1} < \frac{1}{\mu_2} = c_p^2
\]
holds, where \(\lambda_1\) is the first Dirichlet and \(\mu_2\) the second Neumann eigenvalue of the Laplacian. We even have \(0 < \mu_{n+1} < \lambda_n\) for all \(n \in \mathbb{N}\), see e.g., [5] and the literature cited there.

Analogously, (2.4) implies \(\dim \mathcal{H}_{D,\varepsilon}(\Omega) < \infty^*\), since the unit ball in \(\mathcal{H}_{D,\varepsilon}(\Omega)\) is compact, and the tangential Maxwell estimate, i.e., there exists \(c_{m,t,\varepsilon} > 0\) such that
\[
\forall E : \hat{\mathcal{R}}(\Omega) \cap \varepsilon^{-1} \mathcal{D}(\Omega) \quad |(1 - \pi_D)E|_{\Omega,\varepsilon} \leq c_{m,t,\varepsilon} (|\text{rot} \ E|_{\Omega}^2 + |\text{div} \varepsilon E|_{\Omega}^2)^{1/2}, \tag{2.8}
\]
where \(\pi_D : L^2(\Omega) \rightarrow \mathcal{H}_{D,\varepsilon}(\Omega)\) denotes the \(\varepsilon\)-\(L^2(\Omega)\)-orthogonal projector onto Dirichlet fields. Similar results hold if one replaces the tangential or electric boundary condition by the normal or magnetic one. More precisely, (2.5) implies \(\dim \mathcal{H}_{N,\varepsilon}(\Omega) < \infty\) and the corresponding normal Maxwell estimate, i.e., there exists \(c_{m,n,\varepsilon} > 0\) such that
\[
\forall H : \mathcal{R}(\Omega) \cap \varepsilon^{-1} \mathcal{D}(\Omega) \quad |H - \pi_N H|_{\Omega,\varepsilon} \leq c_{m,n,\varepsilon} (|\text{rot} \ H|_{\Omega}^2 + |\text{div} \varepsilon H|_{\Omega}^2)^{1/2}, \tag{2.9}
\]
where \(\pi_N : L^2(\Omega) \rightarrow \mathcal{H}_{N,\varepsilon}(\Omega)\) denotes the \(\varepsilon\)-\(L^2(\Omega)\)-orthogonal projector onto Neumann fields. We note that \(\sqrt{c_{m,t,\varepsilon}^2 + 1}\) can also be seen as the norm of the inverse \(M^{-1}\) of the corresponding electro static Maxwell operator
\[
M : \hat{\mathcal{R}}(\Omega) \cap \varepsilon^{-1} \mathcal{D}(\Omega) \cap \mathcal{H}_{D,\varepsilon}(\Omega) \rightarrow \text{rot} \hat{\mathcal{R}}(\Omega) \times L^2(\Omega) \quad \mapsto \quad (\text{rot} E, \text{div} \varepsilon E).
\]
The analogous statement holds for \(c_{m,n,\varepsilon}\) as well.

The compact embeddings (2.3)-(2.5) hold for more general bounded domains with weaker regularity of the boundary \(\Gamma\), such as domains with cone property, restricted cone property or just \(p\)-cusp-property. See, e.g., [1, 2, 19, 20, 21, 22, 23, 25, 26, 27, 13]. Note that the Maxwell compactness properties and hence the Maxwell estimates hold for mixed boundary conditions as well, see [10, 7, 9]. The boundedness of the underlying domain \(\Omega\) is crucial, since one has to work in weighted Sobolev spaces in unbounded (like exterior) domains, see [11, 12, 13, 14, 15, 17, 16, 19, 23].

As always in the theory of Maxwell’s equations, we need another crucial tool, the Helmholtz or Weyl decompositions of vector fields into irrotational and solenoidal vector fields.

The compact embedding \(d_\varepsilon := \dim \mathcal{H}_{D,\varepsilon}(\Omega)\) is finite and independent of \(\varepsilon\). In particular, \(d_\varepsilon\) depends just on the topology of \(\Omega\). More precisely, \(d_\varepsilon = \beta_2\), the second Betti number of \(\Omega\). A similar result holds also for the Neumann fields, i.e., \(d_\varepsilon := \dim \mathcal{H}_{N,\varepsilon}(\Omega) = \beta_1\).
On Maxwell’s and Poincaré’s Constants

fields. We have

\[
L^2_\varepsilon(\Omega) = \nabla\hat{H}^1(\Omega) \oplus \varepsilon^{-1}D_0(\Omega) = \hat{R}_0(\Omega) \oplus \varepsilon^{-1} \text{rot } \hat{R}(\Omega),
\]

where \(\oplus\) denotes the orthogonal sum with respect the latter scalar product, and note

\[
\nabla\hat{H}^1(\Omega) = \hat{R}_0(\Omega) \cap \mathcal{H}_{\text{D},\varepsilon}(\Omega)^\perp, \quad \varepsilon^{-1} \text{rot } \hat{R}(\Omega) = \varepsilon^{-1}D_0(\Omega) \cap \mathcal{H}_{\text{D},\varepsilon}(\Omega)^\perp.
\]

Moreover, with

\[
\mathcal{R}(\Omega) := \mathcal{R}(\Omega) \cap \text{rot } \hat{R}(\Omega) = \mathcal{R}(\Omega) \cap D_0(\Omega) \cap \mathcal{H}_{\text{N},\varepsilon}(\Omega)^\perp,
\]

we see

\[
\text{rot } \hat{R}(\Omega) = \text{rot } \mathcal{R}(\Omega), \quad \text{rot } \hat{\mathcal{R}}(\Omega) = \text{rot } \mathcal{R}(\Omega).
\]

Note that all occurring spaces are closed subspaces of \(L^2(\Omega)\), which follows immediately by the estimates (2.6)-(2.9). More details about the Helmholtz decompositions can be found e.g. in [13].

If \(\Omega\) is even convex\(^\dagger\) we have some simplifications due to the vanishing of Dirichlet and Neumann fields, i.e., \(\mathcal{H}_{\text{D},\varepsilon}(\Omega) = \mathcal{H}_{\text{N},\varepsilon}(\Omega) = \{0\}\). Then (2.8) and (2.9) simplify to

\[
\forall E \in \hat{R}(\Omega) \cap \varepsilon^{-1}D(\Omega) \quad |E|_{\varepsilon,\varepsilon} \leq c_{\text{m.t},\varepsilon}(|\text{rot } E|_{\text{H}}^2 + |\text{div } \varepsilon E|_{\text{H}}^2)^{1/2}, \tag{2.10}
\]

\[
\forall H \in \mathcal{R}(\Omega) \cap \varepsilon^{-1}\hat{D}(\Omega) \quad |H|_{\varepsilon,\varepsilon} \leq c_{\text{m.n},\varepsilon}(|\text{rot } H|_{\text{H}}^2 + |\text{div } \varepsilon H|_{\text{H}}^2)^{1/2} \tag{2.11}
\]

and we have

\[
\hat{R}_0(\Omega) = \nabla\hat{H}^1(\Omega), \quad \hat{R}_0(\Omega) = \nabla\hat{H}^1(\Omega), \quad D_0(\Omega) = \text{rot } \hat{R}(\Omega), \quad \hat{D}_0(\Omega) = \text{rot } \hat{R}(\Omega)
\]

as well as the simple Helmholtz decompositions

\[
L^2_\varepsilon(\Omega) = \nabla\hat{H}^1(\Omega) \oplus \varepsilon^{-1} \text{rot } \hat{R}(\Omega), \quad L^2_\varepsilon(\Omega) = \nabla\hat{H}^1(\Omega) \oplus \varepsilon^{-1} \text{rot } \hat{R}(\Omega). \tag{2.12}
\]

The aim of this paper is to give a computable estimate for the two Maxwell constants \(c_{\text{m.t},\varepsilon}\) and \(c_{\text{m.n},\varepsilon}\).

\(^\dagger\)Note that convex domains are always Lipschitz, see e.g. [8].
3 The Maxwell Estimates

First, we have an estimate for irrotational fields, which is well known.

Lemma 1 For all \(E \in \nabla \dot{H}^1(\Omega) \cap \varepsilon^{-1} \mathcal{D}(\Omega) \) and all \(H \in \nabla \mathcal{H}^1(\Omega) \cap \varepsilon^{-1} \dot{\mathcal{D}}(\Omega) \)

\[
|E|_{\Omega,\varepsilon} \leq \varepsilon c_{p,\varepsilon} |\text{div} \varepsilon E|_{\Omega}, \quad |H|_{\Omega,\varepsilon} \leq \varepsilon c_{p} |\text{div} \varepsilon H|_{\Omega}.
\]

Proof Pick a scalar potential \(\varphi \in \dot{\mathcal{H}}^1(\Omega) \) with \(E = \nabla \varphi \). Then, by (2.6)

\[
|E|_{\Omega,\varepsilon}^2 = \langle \varepsilon E, \nabla \varphi \rangle_{\Omega} = -\langle \text{div} \varepsilon E, \varphi \rangle_{\Omega} \leq |\text{div} \varepsilon E|_{\Omega} |\varphi|_{\Omega} \leq c_{p,\varepsilon} |\text{div} \varepsilon E|_{\Omega} |\nabla \varphi|_{\Omega}
\]

Let \(\varphi \in \mathcal{H}^1(\Omega) \) with \(H = \nabla \varphi \) and \(\varphi \perp \mathbb{R} \). Since \(\varepsilon H \in \mathcal{D}(\Omega) \) we obtain as before and by (2.7)

\[
|H|_{\Omega,\varepsilon}^2 = \langle \varepsilon H, \nabla \varphi \rangle_{\Omega} = -\langle \text{div} \varepsilon H, \varphi \rangle_{\Omega} \leq |\text{div} \varepsilon H|_{\Omega} |\varphi|_{\Omega} \leq c_{p} |\text{div} \varepsilon H|_{\Omega} |\nabla \varphi|_{\Omega}
\]

which finishes the proof. \(\square \)

Remark 2 Without any change, Lemma 1 extends to Lipschitz domains \(\Omega \subset \mathbb{R}^N \) of arbitrary dimension.

To get similar estimates for solenoidal vector fields we need a crucial lemma from [1, Theorem 2.17], see also [24, 8, 6, 4] for related partial results.

Lemma 3 Let \(\Omega \) be convex and \(E \in \dot{\mathcal{R}}(\Omega) \cap \mathcal{D}(\Omega) \) or \(E \in \mathcal{R}(\Omega) \cap \dot{\mathcal{D}}(\Omega) \). Then \(E \in \mathcal{H}^1(\Omega) \) and

\[
|\nabla E|_{\Omega}^2 \leq |\text{rot} E|_{\Omega}^2 + |\text{div} E|_{\Omega}^2.
\]

We note that for \(E \in \dot{\mathcal{H}}^1(\Omega) \) it is clear that for any domain \(\Omega \subset \mathbb{R}^3 \)

\[
|\nabla E|_{\Omega}^2 = |\text{rot} E|_{\Omega}^2 + |\text{div} E|_{\Omega}^2
\]

holds since \(-\Delta = \text{rot rot} - \nabla \text{div}\). This formula is no longer valid if \(E \) has just the tangential or normal boundary condition but for convex domains the inequality (3.1) remains true.

Lemma 4 Let \(\Omega \) be convex. For all vector fields \(E \in \dot{\mathcal{R}}(\Omega) \cap \varepsilon^{-1} \text{rot} \mathcal{R}(\Omega) \) and all vector fields \(H \in \mathcal{R}(\Omega) \cap \varepsilon^{-1} \text{rot} \mathcal{R}(\Omega) \)

\[
|E|_{\Omega,\varepsilon} \leq \varepsilon c_{p} |\text{rot} E|_{\Omega}, \quad |H|_{\Omega,\varepsilon} \leq \varepsilon c_{p} |\text{rot} H|_{\Omega}.
\]
On Maxwell’s and Poincaré’s Constants

Proof Since $\varepsilon E \in \text{rot} \mathcal{R}(\Omega) = \text{rot} \mathcal{R}(\Omega)$ there exists a vector potential field $\Phi \in \mathcal{R}(\Omega)$ with $\text{rot} \Phi = \varepsilon E$ and $\Phi \in H^1(\Omega)$ by Lemma 3 since $\mathcal{R}(\Omega) = \mathcal{R}(\Omega) \cap \partial_0(\Omega)$. Moreover, $\Phi = \text{rot} \Psi$ can be represented by some $\Psi \in \mathcal{R}(\Omega)$. Hence, for any constant vector $a \in \mathbb{R}^3$ we have $\langle \Phi, a \rangle_\Omega = \langle \text{rot} \Psi, a \rangle_\Omega = 0$. Thus, Φ belongs to $H^1(\Omega) \cap (\mathbb{R}^3)^\perp$. Then, since $E \in \mathcal{R}(\Omega)$ and by Lemma 3 we get

$$|E|_{\Omega, \varepsilon}^2 = \langle E, \varepsilon E \rangle_\Omega = \langle E, \text{rot} \Phi \rangle_\Omega = \langle \text{rot} E, \Phi \rangle_\Omega \leq |\text{rot} E|_\Omega |\Phi|_\Omega \leq c_p |\text{rot} E|_\Omega |\nabla \Phi|_\Omega \leq c_p |\text{rot} E|_\Omega |\Phi|_\Omega = c_p |\text{rot} E|_\Omega |\varepsilon E|_\Omega \leq \varepsilon c_p |\text{rot} E|_\Omega |E|_{\Omega, \varepsilon}.$$

Since $\varepsilon H \in \text{rot} \mathcal{R}(\Omega)$ there exists a vector potential $\Phi \in \mathcal{R}(\Omega)$ with $\text{rot} \Phi = \varepsilon H$. Using the Helmholtz decomposition $L^2(\Omega) = \mathcal{R}_0(\Omega) \oplus \text{rot} \mathcal{R}(\Omega)$, we decompose

$$\mathcal{R}(\Omega) \ni H = H_0 + H_{\text{rot}} \in \mathcal{R}_0(\Omega) \oplus \mathcal{R}(\Omega).$$

Then, $\text{rot} H_{\text{rot}} = \text{rot} H$ and again by Lemma 3 we see $H_{\text{rot}} \in H^1(\Omega)$. Let $a \in \mathbb{R}^3$ such that $H_{\text{rot}} - a \in H^1(\Omega) \cap (\mathbb{R}^3)^\perp$. Since $\Phi \in \mathcal{R}(\Omega)$ and $\langle \text{rot} \Phi, H_0 \rangle_\Omega = 0 = \langle \text{rot} \Phi, a \rangle_\Omega$ as well as by Lemma 3 we obtain

$$|H|_{\Omega, \varepsilon}^2 = \langle \varepsilon H, H \rangle_\Omega = \langle \text{rot} \Phi, H \rangle_\Omega = \langle \text{rot} \Phi, H_{\text{rot}} - a \rangle_\Omega \leq |\varepsilon H|_\Omega |H_{\text{rot}} - a|_\Omega \leq c_p |\varepsilon H|_\Omega |\nabla H_{\text{rot}}|_\Omega \leq \varepsilon c_p |H|_{\Omega, \varepsilon} |\text{rot} H_{\text{rot}}|_\Omega = \varepsilon c_p |H|_{\Omega, \varepsilon} |\text{rot} H|_\Omega,$$

completing the proof.

Remark 5 It is well known that Lemma 4 holds in two dimensions for any Lipschitz domain $\Omega \subset \mathbb{R}^2$. This follows immediately from Lemma 1 if we take into account that in two dimensions the rotation rot is given by the divergence div after 90°-rotation of the vector field to which it is applied. We refer to the appendix for details.

Theorem 6 Let Ω be convex. Then, for all vector fields $E \in \mathcal{R}(\Omega) \cap \varepsilon^{-1} \mathcal{D}(\Omega)$ and all vector fields $H \in \mathcal{R}(\Omega) \cap \varepsilon^{-1} \mathcal{D}(\Omega)$

$$|E|_{\Omega, \varepsilon}^2 \leq \varepsilon^2 c_{p, \varepsilon}^2 \text{div} \varepsilon E|_\Omega^2 + \varepsilon^2 c_p^2 |\text{rot} E|_\Omega^2, \quad |H|_{\Omega, \varepsilon}^2 \leq \varepsilon^2 c_p^2 \text{div} \varepsilon H|_\Omega^2 + \varepsilon^2 c_p^2 |\text{rot} H|_\Omega^2.$$

Thus, $c_{m, \varepsilon, \varepsilon} \leq \max\{c_{p, \varepsilon}, c_p\}$ and

$$c_{m, \varepsilon, \varepsilon, \varepsilon} \leq \varepsilon c_p \leq \varepsilon \text{diam}(\Omega)/\pi.$$

Proof By the Helmholtz decomposition (2.12) we have

$$\mathcal{R}(\Omega) \cap \varepsilon^{-1} \mathcal{D}(\Omega) \ni E = E_\nabla + E_{\text{rot}} \in \nabla H^1(\Omega) \oplus \varepsilon^{-1} \text{rot} \mathcal{R}(\Omega)$$

with $E_\nabla \in \nabla H^1(\Omega) \cap \varepsilon^{-1} \mathcal{D}(\Omega)$ and $E_{\text{rot}} \in \mathcal{R}(\Omega) \cap \varepsilon^{-1} \text{rot} \mathcal{R}(\Omega)$ as well as

$$\text{div} \varepsilon E_\nabla = \text{div} \varepsilon E, \quad \text{rot} E_{\text{rot}} = \text{rot} E.$$
By Lemma 1 and Lemma 4 and orthogonality we obtain
\[|E|_{\Omega,\varepsilon}^2 = |E_H|_{\Omega,\varepsilon}^2 + |E_{rot}|_{\Omega,\varepsilon}^2 \leq \varepsilon^2 c_{p,o}^2 \text{ div } \varepsilon E_{\Omega,\varepsilon}^2 + \varepsilon^2 c_p^2 \text{ rot } E_{\Omega,\varepsilon}^2. \]
Similarly we have
\[|H|_{\Omega,\varepsilon}^2 = |H_H|_{\Omega,\varepsilon}^2 + |H_{rot}|_{\Omega,\varepsilon}^2 \leq \varepsilon^2 c_{p,o}^2 \text{ div } \varepsilon H_{\Omega,\varepsilon}^2 + \varepsilon^2 c_p^2 \text{ rot } H_{\Omega,\varepsilon}^2, \]
which finishes the proof.

Lower bounds can be computed even for general domains Ω:

Theorem 7 It holds
\[\frac{c_{p,o}}{\varepsilon^2} \leq c_{m.t,\varepsilon}, \quad \frac{c_p}{\varepsilon^2} \leq c_{m.n,\varepsilon}. \]

Proof Let λ_1 resp. $\lambda_{1,\varepsilon}$ be the first Dirichlet eigenvalue of the negative Laplacian $-\Delta$ resp. weighted Laplacian $-\Delta$ in Ω.

\[\frac{1}{c_{p,o}^2} = \lambda_1 = \inf_{0 \neq u \in H^1(\Omega)} \frac{|\nabla u|_{\Omega,\varepsilon}^2}{|u|_{\Omega,\varepsilon}^2} \geq \frac{1}{\varepsilon^2} \inf_{0 \neq u \in H^1(\Omega)} \frac{|\nabla u|_{\Omega,\varepsilon}^2}{|u|_{\Omega,\varepsilon}^2} = \frac{\lambda_{1,\varepsilon}}{\varepsilon^2}. \]

Hence $\lambda_{1,\varepsilon} \leq (\varepsilon/c_{p,o})^2$. Let $u \in \mathbf{H}^1(\Omega)$ be an eigenfunction to $\lambda_{1,\varepsilon}$. Note that u satisfies
\[\forall \varphi \in \mathbf{H}^1(\Omega) \quad \langle \varepsilon \nabla u, \nabla \varphi \rangle = \lambda_{1,\varepsilon} \langle u, \varphi \rangle_{\Omega}. \]

Then $0 \neq E := \nabla u$ belongs to $\nabla \mathbf{H}^1(\Omega) \cap \varepsilon^{-1} \mathbf{D}(\Omega) = \mathbf{R}_0(\Omega) \cap \varepsilon^{-1} \mathbf{D}(\Omega) \cap \mathbf{H}_{0,\varepsilon}(\Omega)$ and solves $-\div \varepsilon E = -\div \varepsilon \nabla u = \lambda_{1,\varepsilon} u$. By (2.8) and (2.6) we have
\[|E|_{\Omega,\varepsilon} \leq c_{m.t,\varepsilon} \div E_{\Omega} = c_{m.t,\varepsilon} \lambda_{1,\varepsilon} |u|_{\Omega} \leq c_{m.t,\varepsilon} \lambda_{1,\varepsilon} c_{p,o} |\nabla u|_{\Omega} \leq \frac{c_{m.t,\varepsilon}}{c_{p,o}} \varepsilon^2 |E|_{\Omega,\varepsilon} \]
yielding $c_{p,o} \leq c_{m.t,\varepsilon} \varepsilon^2$. Now, we follow the same arguments for the Neumann eigenvalues.

Let μ_2 resp. $\mu_{2,\varepsilon}$ be the second Neumann eigenvalue of the negative Laplacian $-\Delta$ resp. weighted Laplacian $-\Delta$ in Ω.

\[\frac{1}{c_p^2} = \mu_2 = \inf_{0 \neq u \in H^1(\Omega) \cap \mathbf{R}^\perp} \frac{|\nabla u|_{\Omega,\varepsilon}^2}{|u|_{\Omega,\varepsilon}^2} \geq \frac{1}{\varepsilon^2} \inf_{0 \neq u \in H^1(\Omega) \cap \mathbf{R}^\perp} \frac{|\nabla u|_{\Omega,\varepsilon}^2}{|u|_{\Omega,\varepsilon}^2} = \frac{\mu_{2,\varepsilon}}{\varepsilon^2}. \]
Hence $\mu_{2,\varepsilon} \leq (\varepsilon/c_p)^2$. Let $u \in H^1(\Omega) \cap \mathbb{R}^\perp$ be an eigenfunction to $\mu_{2,\varepsilon}$. Note that u satisfies

$$\forall \varphi \in H^1(\Omega) \cap \mathbb{R}^\perp \quad \langle \varepsilon \nabla u, \nabla \varphi \rangle_\Omega = \mu_{2,\varepsilon} \langle u, \varphi \rangle_\Omega$$

and that this relation holds even for all $\varphi \in H^1(\Omega)$. Then $0 \neq H := \nabla u$ belongs to $\nabla H \in H^1(\Omega) \cap \mathbb{R}^\perp$. By (2.9) and (2.7) we have

$$|H|_{\Omega,\varepsilon} \leq c_{m,n,\varepsilon} |\nabla H|_{\Omega} \leq c_{m,n,\varepsilon} \mu_{2,\varepsilon} c_p |\nabla u|_{\Omega} \leq \frac{c_{m,n,\varepsilon}}{c_p} \varepsilon^2 |H|_{\Omega,\varepsilon}$$

yielding $c_p \leq c_{m,n,\varepsilon} \varepsilon^2$. The proof is complete. □

Remark 8 The latter proof shows that Theorem 7 extends to any Lipschitz domain $\Omega \subset \mathbb{R}^N$ of arbitrary dimension with the appropriate changes for the rotation operator.

Combining Theorems 6 and 7 we obtain:

Theorem 9 Let Ω be convex. Then

$$\frac{c_{p,\varepsilon}}{\varepsilon^3} \leq c_{m,t,\varepsilon} \leq \hat{\varepsilon} c_p, \quad \frac{c_{p,\varepsilon}}{\varepsilon^3} \leq c_{m,n,\varepsilon} \leq \hat{\varepsilon} c_p$$

and hence

$$\frac{c_{p,\varepsilon}}{\varepsilon^3} \leq c_{m,t,\varepsilon}, c_{m,n,\varepsilon} \leq \hat{\varepsilon} c_p \leq \hat{\varepsilon} \text{diam}(\Omega)/\pi.$$ If additionally $\varepsilon = \text{id}$, then

$$c_{p,\varepsilon} \leq c_{m,t} \leq c_{m,n} = c_p \leq \text{diam}(\Omega)/\pi.$$

Remark 10 Our results extend also to all possibly non-convex polyhedra which allow the $H^1(\Omega)$-regularity of the Maxwell spaces $\mathcal{R}(\Omega) \cap \mathcal{D}(\Omega)$ and $\mathcal{R}(\Omega) \cap \mathcal{D}(\Omega)$ or to domains whose boundaries consist of combinations of convex boundary parts and polygonal parts which allow the $H^1(\Omega)$-regularity. Is is shown in [4, Theorem 4.1] that (3.1), even (3.2), still holds for all $E \in H^1(\Omega) \cap \mathcal{D}(\Omega)$ or $E \in H^1(\Omega) \cap \mathcal{D}(\Omega)$ if Ω is a polyhedron\(^\dagger\). We note that even some non-convex polyhedra admit the $H^1(\Omega)$-regularity of the Maxwell spaces depending on the angle of the corners, which are not allowed to by too pointy.

Remark 11

(i) We conjecture $c_{p,\varepsilon} < c_{m,t} < c_{m,n} = c_p$ for convex $\Omega \subset \mathbb{R}^3$.

(ii) We note that by Theorem 9 we have given a new proof of the estimate

$$0 < \mu_2 \leq \lambda_1$$

for convex $\Omega \subset \mathbb{R}^3$. Moreover, the absolute values of the eigenvalues of the different Maxwell operators (tangential or normal boundary condition) lie between $\sqrt{\mu_2}$ and $\sqrt{\lambda_1}$.

\(^\dagger\)The crucial point is that the unit normal is piecewise constant and hence the curvature is zero.
Finally, we note that in the case \(\varepsilon = \text{id} \) we can find some different proofs for the lower bounds in less general settings. For example, if \(\Omega \) has a connected boundary, then \(\mathcal{H}_0(\Omega) = \{0\} \) and hence

\[
\frac{1}{c_{p,t}^2} = \inf_{0 \neq E \in \hat{\mathcal{R}}(\Omega) \cap \mathcal{D}(\Omega)} \frac{|\text{rot } E|^2_{\Omega} + |\text{div } E|^2_{\Omega}}{|E|^2_{\Omega}} \\
\leq \inf_{0 \neq E \in H^1(\Omega)} \frac{|\text{rot } E|^2_{\Omega} + |\text{div } E|^2_{\Omega}}{|E|^2_{\Omega}} = \inf_{0 \neq E \in H^1(\Omega)} \frac{|\nabla E|^2_{\Omega}}{|E|^2_{\Omega}} = \frac{1}{c_{p,o}^2}
\]

giving \(c_{p,o} \leq c_{n,t} \). If \(\Omega \) is simply connected, then \(\mathcal{H}_0(\Omega) = \{0\} \) and hence

\[
\frac{1}{c_{m,n}^2} = \inf_{0 \neq H \in \hat{\mathcal{R}}(\Omega) \cap \mathcal{D}(\Omega)} \frac{|\text{rot } H|^2_{\Omega} + |\text{div } H|^2_{\Omega}}{|H|^2_{\Omega}} \\
\leq \inf_{0 \neq H \in H^1(\Omega)} \frac{|\text{rot } H|^2_{\Omega} + |\text{div } H|^2_{\Omega}}{|H|^2_{\Omega}} = \inf_{0 \neq H \in H^1(\Omega)} \frac{|\nabla H|^2_{\Omega}}{|H|^2_{\Omega}} = \frac{1}{c_{p,o}^2}
\]

yielding \(c_{p,o} \leq c_{m,n} \). Another proof could be like this: Again, we assume that \(\Gamma \) is connected for the tangential case resp. that \(\Omega \) is simply connected for the normal case. Let \(u \in H^1(\Omega) \) and \(\xi \in \mathbb{R}^3 \) with \(|\xi| = 1 \). Then \(E := u\xi \in H^1(\Omega) \subset \hat{\mathcal{R}}(\Omega) \cap \mathcal{D}(\Omega) \) and since there are no Dirichlet resp. Neumann fields, we get by (2.8) resp. (2.9) and \(\text{rot } E = \nabla u \times \xi, \text{div } E = \nabla \cdot \xi \)

\[
|u|^2_{\Omega} = |E|^2_{\Omega} \leq c_{p,n}^2 (|\text{rot } E|^2_{\Omega} + |\text{div } E|^2_{\Omega}) = c_{n}^2 |\nabla u|^2_{\Omega}.
\]

Therefore \(c_{p,o} \leq c_{m} \), where \(c_{m} = c_{n,t} \) resp. \(c_{m} = c_{m,n} \).

Acknowledgements The author is deeply indebted to Sergey Repin not only for bringing his attention to the problem of the Maxwell constants in 3D. Moreover, the author wants to thank Sebastian Bauer und Karl-Josef Witsch for long term fruitful and deep discussions. Finally, the author thanks the anonymous referee for careful reading and valuable suggestions, especially concerning the lower bounds.

References

A Appendix: The Maxwell Estimates in Two Dimensions

Finally, we want to note that similar but simpler results hold in two dimensions as well. More precisely, for $N = 2$ the Maxwell constants can be estimated by the Poincaré constants in any bounded Lipschitz domain $\Omega \subset \mathbb{R}^2$. Although this is quite well known, we present the results for convenience and completeness.

As noted before, Lemma 1 holds in any dimension. In two dimensions the rotation rot differs from the divergence div just by a 90°-rotation R given by

$$R := \begin{bmatrix} 0 & 1 \\ -1 & 0 \end{bmatrix}, \quad R^2 = -\text{id}, \quad R^\top = -R = R^{-1}.$$

The same holds for the co-gradient $\triangleleft := \text{rot}^*$ (as formal adjoint) and the gradient ∇. More precisely, for smooth functions u and smooth vector fields v we have

$$\text{rot} \ v = \text{div} \ Rv = \partial_1 v_2 - \partial_2 v_1, \quad \triangleleft u = R \nabla u = \begin{bmatrix} \partial_2 u \\ -\partial_1 u \end{bmatrix},$$

$$\text{div} \ v = -\text{rot} \ Rv, \quad \nabla u = -R \triangleleft u$$
and thus also \(-\Delta u = -\text{div} \nabla u = \text{div} RR\nabla u = \text{rot} \vartriangle u\). For the vector Laplacian we have \(-\Delta v = \langle \text{rot} - \nabla \rangle \text{div} \). Furthermore,

\[
v \in R(\Omega) \iff Rv \in D(\Omega), \quad v \in \hat{R}(\Omega) \iff Rv \in \hat{D}(\Omega).
\]

The Helmholtz decompositions read

\[
L^2(\Omega) = \nabla \Hat{H}^1(\Omega) \oplus \varepsilon^{-1}D_0(\Omega)
= \Hat{R}_0(\Omega) \oplus \varepsilon^{-1}H^1(\Omega)
= \nabla \Hat{H}^1(\Omega) \oplus \varepsilon H_{d,\varepsilon}(\Omega) \oplus \varepsilon^{-1}H^1(\Omega),
\]

\[
L^2(\Omega) = \nabla H^1(\Omega) \oplus \varepsilon^{-1}D_0(\Omega)
= \Hat{R}_0(\Omega) \oplus \varepsilon^{-1}H^1(\Omega)
= \nabla H^1(\Omega) \oplus \varepsilon H_{d,\varepsilon}(\Omega) \oplus \varepsilon^{-1}H^1(\Omega)
\]

and we note

\[
\nabla \Hat{H}^1(\Omega) = \Hat{R}_0(\Omega) \cap H_{d,\varepsilon}(\Omega)^{-\varepsilon},
\]

\[
\nabla H^1(\Omega) = \hat{R}_0(\Omega) \cap H_{d,\varepsilon}(\Omega)^{-\varepsilon},
\]

\[
\varepsilon^{-1}H^1(\Omega) = \varepsilon^{-1}D_0(\Omega) \cap H_{d,\varepsilon}(\Omega)^{\varepsilon},
\]

\[
\Hat{H}^1(\Omega) = \Hat{R}_0(\Omega) \cap H_{d,\varepsilon}(\Omega)^{-\varepsilon}.
\]

We also need the matrix \(\varepsilon_R := -R\varepsilon R\), which fulfills the same estimates as \(\varepsilon\), i.e., for all \(E \in L^2(\Omega)\)

\[
\varepsilon^{-2}|E|^2_\Omega \leq \langle \varepsilon_R E, E \rangle_\Omega \leq \varepsilon^2|E|^2_\Omega,
\]

since \(\langle \varepsilon RE, E \rangle_\Omega = \langle \varepsilon RE, RE \rangle_\Omega\) and \(|RE|_\Omega = |E|_\Omega\). But then the inverse \(\varepsilon_R^{-1}\) satisfies for all \(E \in L^2(\Omega)\)

\[
\varepsilon^{-2}|E|^2_\Omega \leq \langle \varepsilon_R^{-1} E, E \rangle_\Omega \leq \varepsilon^2|E|^2_\Omega,
\]

which immediately follows by (2.2), i.e.,

\[
\langle \varepsilon_R^{-1} E, E \rangle_\Omega = |\varepsilon_R^{-1/2} E|_\Omega^2 \left\{ \begin{array}{ll}
\leq \varepsilon^2 \langle \varepsilon_R^{-1/2} E, \varepsilon_R^{-1/2} E \rangle_\Omega &= \varepsilon^2 |E|_\Omega^2 \\
\geq \varepsilon^{-2} \langle \varepsilon_R^{-1/2} E, \varepsilon_R^{-1/2} E \rangle_\Omega &= \varepsilon^{-2} |E|_\Omega^2
\end{array} \right.
\]

Hence, for the inverse matrix \(\varepsilon_R^{-1} = -R\varepsilon^{-1}R\) simply \(\varepsilon\) and \(\varepsilon\) has to be exchanged. Furthermore, we have \(\varepsilon_R^{\pm 1/2} = -R\varepsilon^{\mp 1/2}R\).

For the solenoidal fields we have the following:

Lemma 12 For all \(E \in \Hat{R}(\Omega) \cap \varepsilon^{-1}H^1(\Omega)\) and all \(H \in R(\Omega) \cap \varepsilon^{-1}H_\varepsilon^1(\Omega)\)

\[
|E|_{\Omega,\varepsilon} \leq \varepsilon c_p |\text{rot} E|_\Omega, \quad |H|_{\Omega,\varepsilon} \leq \varepsilon c_p |\text{rot} H|_\Omega.
\]

Proof Since \(RE \in \Hat{D}(\Omega)\) and \(R\varepsilon E \in \nabla H^1(\Omega)\) we have \(R\varepsilon E \in \nabla H^1(\Omega) \cap \varepsilon_R \Hat{D}(\Omega)\). By Lemma 1 (interchanging \(\varepsilon\) and \(\varepsilon\)) we get

\[
|E|_{\Omega,\varepsilon} = |\varepsilon^{1/2} E|_\Omega = |R\varepsilon^{-1/2} E|_\Omega = |\varepsilon^{-1/2} R\varepsilon E|_\Omega = |R\varepsilon E|_{\Omega,\varepsilon_R^{-1}} \leq \varepsilon c_p |\text{div} \varepsilon_R^{-1} R\varepsilon E|_\Omega = \varepsilon c_p |\text{rot} E|_\Omega.
\]
Analogously, as $RH \in D(\Omega)$ and $R\alpha R \in \nabla H^1(\Omega)$ we have $R\alpha R \in \nabla H^1(\Omega) \cap \varepsilon_R D(\Omega)$. Again by Lemma 1 (and again interchanging ε and $\bar{\varepsilon}$) we get

$$|H|_{\Omega, \varepsilon} = |\varepsilon|^{1/2} H|_{\Omega} = |R\varepsilon^{-1/2} \varepsilon H|_{\Omega} = |\varepsilon_R^{-1/2} \varepsilon R \varepsilon H|_{\Omega} = |R \varepsilon H|_{\Omega, \varepsilon_R^{-1}}$$

which completes the proof.

Finally, the main result is proved as Theorems 6, 7 and 9, but taking into account that there are now possibly Dirichlet and Neumann fields.

Theorem 13 For all $E \in \overset{\circ}{R}(\Omega) \cap \varepsilon^{-1} D(\Omega)$ and all $H \in R(\Omega) \cap \varepsilon^{-1} \overset{\circ}{D}(\Omega)$

$$|E - \pi_\varepsilon E|_{\Omega, \varepsilon}^2 \leq \varepsilon^2 c_{p, o}^2 |\varepsilon E|_{\Omega, \varepsilon}^2 + \varepsilon^2 c_p^2 \|\varepsilon E\|_{\Omega, \varepsilon}^2$$

Thus

$$\frac{c_{p, o}}{\varepsilon^2} \leq c_{m, t, \varepsilon} \leq \max\{\varepsilon c_{p, o}, \overline{\varepsilon c}_{p, o}\}, \quad \frac{c_{p, o}}{\varepsilon^2} < \frac{c_p}{\varepsilon^2} \leq c_{m, n, \varepsilon} \leq \max\{\varepsilon c_p, \overline{\varepsilon c}_{p, o}\}$$

and hence

$$\frac{c_{p, o}}{\varepsilon^2} \leq c_{m, t, \varepsilon}, c_{m, n, \varepsilon} \leq \overline{\varepsilon c}_p.$$

For $\varepsilon = \text{id}$ it holds

$$c_{p, o} \leq c_{m, t} \leq c_{m, n} = c_p$$

and if additionally Ω is convex we have $c_p \leq \text{diam}(\Omega)/\pi$.

Proof Using the Helmholtz decomposition we have

$$R(\Omega) \cap \varepsilon^{-1} \overset{\circ}{D}(\Omega) \cap H_{n, \varepsilon}(\Omega) \ni E - \pi_\varepsilon E = E_{\nabla} + E_{\sigma} \in \nabla H^1(\Omega) \oplus \varepsilon^{-1} H^1(\Omega)$$

with $E_{\nabla} \in \nabla H^1(\Omega) \cap \varepsilon^{-1} \overset{\circ}{D}(\Omega)$ and $E_{\sigma} \in \overset{\circ}{R}(\Omega) \cap \varepsilon^{-1} H^1(\Omega)$ as well as

$$\text{div} \varepsilon E_{\nabla} = \text{div} \varepsilon E, \quad \text{rot} E_{\sigma} = \text{rot} E.$$

Thus, by Lemma 1 and Lemma 12 as well as orthogonality we obtain

$$|E - \pi_\varepsilon E|_{\Omega, \varepsilon}^2 = |E_{\nabla} E_{\sigma}|_{\Omega, \varepsilon}^2 \leq \varepsilon^2 c_{p, o}^2 |\varepsilon E|_{\Omega, \varepsilon}^2 + \varepsilon^2 c_p^2 \|\varepsilon E\|_{\Omega, \varepsilon}^2$$

Analogously, we decompose

$$R(\Omega) \cap \varepsilon^{-1} \overset{\circ}{D}(\Omega) \cap H_{n, \varepsilon}(\Omega) \ni H - \pi_\varepsilon H = H_{\nabla} + H_{\sigma} \in \nabla H^1(\Omega) \oplus \varepsilon^{-1} \overset{\circ}{H}^1(\Omega)$$

with $H_{\nabla} \in \nabla H^1(\Omega) \cap \varepsilon^{-1} \overset{\circ}{D}(\Omega)$ and $H_{\sigma} \in R(\Omega) \cap \varepsilon^{-1} H^1(\Omega)$ as well as

$$\text{div} \varepsilon H_{\nabla} = \text{div} \varepsilon H, \quad \text{rot} H_{\sigma} = \text{rot} H.$$

As before, by Lemma 1, Lemma 12 and orthogonality we see

$$|H - \pi_\varepsilon H|_{\Omega, \varepsilon}^2 = |H_{\nabla} H_{\sigma}|_{\Omega, \varepsilon}^2 \leq \varepsilon^2 c_{p, o}^2 |\varepsilon H|_{\Omega, \varepsilon}^2 + \varepsilon^2 c_p^2 \|\varepsilon H\|_{\Omega, \varepsilon}^2$$

yielding the assertion for the upper bounds. For the lower bounds we refer to Remark 8, which completes the proof. □