Veranstaltungsarten (SWS)
Vorlesung: 2 │ Übung: 1 │ Praktikum: 0 │ Seminar: 0
Prüfungsnummer: ZKB 40229
Lehrform:
  • Vorlesung mit Folienpräsentation (PowerPoint) und handschriftliche Ergänzungen
  • Übungen mit Tafelanschrieben bzw. Tablet
Sprache: Deutsch
Turnus: SS
ECTS: 4
Prüfungsleistung

Schriftliche Prüfung von 120 Minuten

Klausur (120 min.)
zugeordnete Studiengänge
zugeordnete Personen
zugeordnete Module
Informationen
Beschreibung:

In dieser Vorlesung werden die wesentlichen Grundlagen der Robotik zusammengestellt, wobei sich die Betrachtungen in erster Linie auf Industrieroboter als frei programmierbare multifunktionale Manipulatoren konzentrieren. Im Einzelnen werden folgende Schwerpunkte behandelt:

  • Der Industrieroboter als mechatronisches System
  • Einführung der Bauformen und Gestaltungselemente wie Hebel, Gelenke und Antriebe
  • Grundlagen der Starrkörpertransformation (Rotationsmatrizen, homogene Transformationen)
  • Aufstellung der Roboterkinematik (direkte Kinematik, inverse Kinematik)
  • Modellierung der Kinematik nach Denavit-Hartenberg
  • Kinematik auf Geschwindigkeitsebene, Aufstellung der Jacobi-Matrix
  • Trajektorienberechnung (Trajektorienberechnung für einzelne Antriebe, synchronisierte Punkt-zu-Punkt-Bewegung mehrerer Antriebe, Vorgabe kartesischer Bewegungen
  • Einfache Verfahren zur Kollisionsvermeidung auf Basis von Potentialfeldern

In Beispielen wird die Anwendung dieser Verfahren demonstriert.

 

Lernziele:

Die Studierenden sind mit typischen Bauformen von Industrierobotern vertraut und in der Lage, die kinematische Beschreibung für Roboterarme aufzustellen. Sie sind in der Lage, Verfahren der Trajektorienberechnung anzuwenden.

Die Studierenden sind für weiterführende Themen wie die Aufstellung der Dynamikgleichungen oder die Regelung von Manipulatoren vorbereitet.

Literatur:
  • Spong, M.; et. al.: Robot Modeling and Control, Wiley, 2006
  • Craig: Introduction to Robotics: Mechanism and Control, Addison Wesley, 1989.
  • Mc Kerrow: Introduction to Robotics, Addison Wesley, 1991.
  • Paul: Robot Manipulators, MIT Press, 1981.
  • Fu, Gonzales, Lee: Robotics: Control, Sensing, Vision and Intelligence, 1987.
Vorleistung:

Gute Kenntnisse der linearen Algebra

Infolink:
Bemerkung:
Description:

In this course the basic equations of robotic systems are derived. The considerations mainly focus on industrial robots as free programmable multifunctional manipulators. In particular the topics are treated:

  • the industrial robot as a mechatronic system
  • introduction of typical structures and design elements like links, joints and drives
  • fundamental of rigid body transformations (rotation matrices, homogeneous Transformations)
  • formulation of robot kinematics (direct kinematics, inverse kinematics)
  • modelling of kinematics based on the Denavit-Hartenberg approach
  • velocity kinematics, formulation of the Jacobian
  • calculation of trajectories (trajectories for individual drives, synchronised point-to-point motion of multidrive systems, prescription of cartesian motion)
  • Simple approaches for collision avoidance based on potential fields

Examples demonstrate the application of these methods.

Learning Targets:

The students will become familiar with the typical constructions of industrial robots and will be in a position to set up the kinematic description of robot arm. They will be in a position to apply methods to compute the trajectories of a robot.

The students are prepared for subsequent topics like the modeling of the robot dynamics and the control of manipulators.

Literature:
  • Spong, M.; et. al.: Robot Modeling and Control, Wiley, 2006
  • Craig: Introduction to Robotics: Mechanism and Control, Addison Wesley, 1989.
  • Mc Kerrow: Introduction to Robotics, Addison Wesley, 1991.
  • Paul: Robot Manipulators, MIT Press, 1981.
  • Fu, Gonzales, Lee: Robotics: Control, Sensing, Vision and Intelligence, 1987.
Pre-Qualifications:

Good knowledge of linear algrebra

Info Link:
Notice: