Sie haben JavaScript deaktiviert! Ohne Javascript stehen Ihnen einige Funktionen nicht zur Verfügung.Eine Anleitung zum Aktivieren von Javascript finden Sie hier.
Cookies erleichtern die Bereitstellung unserer Dienste. Mit der Nutzung unserer Dienste erklären Sie sich damit einverstanden, dass wir Cookies verwenden.
Repetitorium
Klausurarbeit in schriftlicher oder elektronischer Formodermündliche PrüfungoderVortrag mit Kolloquiumoder Hausarbeit (mind. 10 Seiten) mit Kolloquium
• Mathematische Grundlagen und Definitionen• Klassifizierung von partiellen Differentialgleichungen• Grundlagen der Methode der Finiten Differenzen• Variationsrechnung• Verfahren nach Ritz• Balkentheorie nach Bernoulli• Methode der finiten Elemente• Galerkin Verfahren
Die Studierenden erlernen die Grundlagen der finiten Elemente Methode und implementieren selbständig numerische Routinen in Computerübungen. Ziel ist es, die Studierenden zu befähigen, einfache Randwertprobleme unter Verwendung der Methode der finiten Elemente selbständig durchzuführen. Darüber hinaus sollen die Studierenden die Leistungsfähigkeit der Methodik, aber auch deren Anwendungsgrenzen, erkennen.
Cook/Malkus/Plesha: Concepts and Applications of Finite Element Analysis, John Wiley & Sons
Zienkiewicz/Taylor: The Finite Element Method – Volume 1, The Basis, Butherworth & Heinemann
Zienkiewicz/Taylor: The Finite Element Method – Volume 2, Solid Mechanics, Butherworth & Heinemann
Technische Mechanik 1 und 2;
Mathematik 1 und 2
The lecture addresses methods for numerical solutions of mechanical initial- and boundary value problems. We will primarily focus on the foundations of the linear Finite-Element Method. The lecture is organized as follows:
Basic target of computational mechanics is to describe and predict the mechanical behavior of materials by using numerical simulation methods. For this purpose the Finite Element Method plays a major role, where the mechanical response of (mostly solid) materials is calculated by defining boundary conditions. In this module the foundations of this method are explained and deepened in exercises where the students have to implement numerical routines independently. The goal is to qualify the students to solve simple boundary value problems based on the Finite Element Method. In addition, the students are intended to be aware of the performance of the method, but also of the limitations of applicability.