ZMB Member Bettina Siebers

Prof. Dr. Bettina Siebers

Prof. Dr. Bettina Siebers

+49 201 183 7061

Fakultät für Chemie
Universitätsstr. 5
45141 Essen

Research Overview


Since their discovery as a third domain of life by Carl Woese and beside Bacteria and Eukarya Archaea have not only served to study adaptation processes to extreme growth conditions. Being an important third and comparative lineage, they were also instrumental in studying the evolution and characteristics of central cellular functions.

Central carbohydrate metabolism (CCM) in hyperthermophilic Archaea

As an increasing amount of genome sequence information becomes available, one of the major challenges of the post-genome era is to elucidate the function of numerous hypothetical genes which were found in all studied genomes (20-40% of genes).

Biochemistry and Physiology

Many of the proteins of the CCM of T. tenax (about 22; partly in collaboration with R. Hensel) and other hyperthermophiles, either identified by classical reversed genetics or new genomics-based methods, were expressed in Escherichia coli, purified and the predicted activity was confirmed by enzymatic studies.

Transcription and transcription regulation: The archaeal model system

Since there are only three homologs to eukaryal general transcription factors (GTFs) present in Archaea, and because of similar promoter organisation, archaeal transcription is generally accepted to provide a simpler model of the eukaryal transcription. In a project in the Research Training Group ("Transcription, Chromatin Structure and DNA Repair in Development and Differentiation", University of Duisburg-Essen) we work on the regulation of basal transcription, addressing the role of multiple transcription factors (TFB), and the identification of transcriptional regulators in T. tenax.

Systems Biology: "SulfoSYS"

Silicon Cell Model for the central carbohydrate metabolism of the archaeon Sulfolobus solfataricus under temperature variation.