Differential geometry of complex vector bundles — Exercises

Problem Set 3

Problem 1 (Sheaves)

Let X be a topological space. A sheaf of a abelian groups \mathcal{F} on X consists of the data

* for every open subset $U \subset X$ an abelian group $\mathcal{F}(U)$, and
* for every inclusion $V \subset U$ of open sets, a morphism of abelian groups

$$r_{UV} : \mathcal{F}(U) \to \mathcal{F}(V),$$

satisfying the following conditions

1. $\mathcal{F}(\emptyset) = 0$.
2. $r_{UU} = id_{\mathcal{F}(U)}$.
3. If $W \subset V \subset U$ are three open subsets, then $r_{UV} = r_{VW} \circ r_{UV}$.
4. If U is an open subset, $\{V_i\}$ an open covering of U, and $s \in \mathcal{F}(U)$ such that $r_{UV_i}(s) = 0$ for all i, then $s = 0$.
5. If U is an open subset, $\{V_i\}$ an open covering of U, and $s_i \in \mathcal{F}(V_i)$ are such that

$$r_{V_i(V_i \cap V_j)}(s_i) = r_{V_j(V_i \cap V_j)}(s_j)$$

for all i, j, then there exists a unique $s \in \mathcal{F}(U)$ such that $r_{UV_i}(s) = s_i$.

An element $s \in \mathcal{F}(U)$ is called a section, and r_{UV} is called the restriction from U to V.

Let now X be a complex manifold, and E a holomorphic vector bundle over X. For every open set $U \subset X$, let $\Gamma(U, E)$ be the vector space of sections of $E|_U$. Furthermore, if $V \subset U$ is another open set, we let $r_{UV} : \Gamma(U, E) \to \Gamma(V, E)$ be given by restriction of sections of $E|_U$ to the open subset V. Show that this defines a sheaf of abelian groups on X, called the sheaf of sections of E, and denoted by $\mathcal{O}_X(E)$. In particular, from the trivial line bundle $X \times \mathbb{C}$ we obtain the sheaf \mathcal{O}_X of holomorphic functions on X.

Note that the same statement and proof holds for the spaces of differentiable sections.
Problem 2 *(Holomorphic line bundles and invertible sheaves)*

Let \mathcal{F}, \mathcal{G} be two sheaves on the topological space X. A sheaf homomorphism $\alpha : \mathcal{F} \to \mathcal{G}$ is a family of group homomorphisms $\alpha_U : \mathcal{F}(U) \to \mathcal{G}(U)$, compatible with restriction maps. If all the α_U are isomorphisms, we call α an isomorphism, and we write $\mathcal{F} \cong \mathcal{G}$.

Let X be a complex manifold. We say a sheaf of abelian groups \mathcal{F} on X is invertible if there exists an open covering $(U_i)_{i \in I}$ of X such that $\mathcal{F}|_{U_i} \cong \mathcal{O}_{U_i}$. Show that there exists a bijection between invertible sheaves and holomorphic line bundles on X.

Problem 3 *(Images and kernels of bundle homomorphisms)*

Let X be a complex manifold, and let $\pi : E \to X$ and $\psi : F \to X$ be holomorphic vector bundles on X. A morphism of vector bundles of rank k is a holomorphic map $\phi : E \to F$ such that $\pi = \psi \circ \phi$, and such that for every $x \in X$, the induced map of vector spaces

$$\phi_x : E_x \to F_x$$

is C-linear of rank k. Show that the image of E is a holomorphic subbundle of rank k of F. We set

$$\ker \phi := \{e \in E \mid \phi_{\pi(e)}(e) = 0 \in F_{\pi(e)}\}.$$

Show that $\ker \phi$ is a holomorphic subbundle of rank $\text{rk}E - k$ of E.

Problem 4 *(Pullback of forms)*

Let $f : X \to Y$ be a holomorphic map between complex manifolds. Show that the pull-back

$$f^* : C^\infty(Y, \Omega^k_Y) \to C^\infty(X, \Omega^k_X)$$

respects the decomposition into forms of type (p, q), i.e., if α has type (p, q), then $f^*(\alpha)$ also has type (p, q).

Due: Friday, November 28th, 2014, at the end of the lecture.