An Introduction to derived algebraic geometry

"add derived intersection"

classical schemes \(\xrightarrow{\sim}\) derived schemes

\[
\text{algebraic} \quad 1\text{-stacks} \quad \xrightarrow{\sim} \quad \text{derived} \quad \text{algebraic} \quad 1\text{-stacks}
\]

\[
\text{algebraic} \quad (\infty,1)\text{-stacks} \quad \xrightarrow{\sim} \quad \text{derived} \quad \text{algebraic} \quad (\infty,1)\text{-stacks}
\]

"add homotopy quotients"

[derived] stack \(F\) is \(n\)-algebraic

if \(\mathcal{E}\) [derived] scheme \(X\), smooth \(\mathcal{E} \xrightarrow{\text{epi}} F\) s.t.

\[
\text{Y}(\text{derived})\text{ scheme } \text{Y} \quad \xrightarrow{\text{Y} \times X} \quad \text{Y}\}
\]

\(Y_F X\) is \((\infty,1)\)-algebraic

TODAY: \(\text{QCoh, Perf, vector bundles, vanishing locus of a section of a vector bundle}\)
Stable ∞-categories of quasi-coherent sheaves

Recollection:

Def. An ∞-category C is stable if

1. there exists a zero object $0 \in C$ (i.e. $\text{Hom}_{\mathcal{C}}(0, X) \cong \{0\}$ for all X)
2. $\forall f : X \to Y$ there exist fibers and cofibers

 \[
 \begin{array}{c}
 X \to Y \\
 \downarrow \theta \downarrow \\
 0 \to \text{cofib}(f)
 \end{array}
 \begin{array}{c}
 \downarrow \\
 0
 \end{array}
 \begin{array}{c}
 \downarrow \\
 0 \to Y
 \end{array}
 \]
3. A "triangle" in C is a fiber sequence
 if it is a cofiber sequence

 "triangle":

 \[
 \begin{array}{c}
 X \xrightarrow{f} Y \\
 \downarrow \theta \downarrow \\
 0 \to Z
 \end{array}
 \]

Det. If C has 0, define $X[1]$ as $\frac{C - C}{\text{ad}}$. $X[1]$ is a functor.

Prop. If C is a stable ∞-category
then hC is a triangulated category with

distinguished triangles $X \to Y \to Z \to X[1]$
that are lifts of $X \to Y \to 0 \to Z \to W$

Where to find stable ∞-categories?

1) C - differential graded category $\to \text{Ndg}(C)$ - ∞-category
 (over a comm. ring k)

 E.g. if A is an additive category,
 then $\text{Ndg}(\text{Ch}(A))$ is a stable ∞-category

 In fact, \{pre-triangulated differential graded categories over k\} \sim \{idempotent-complete k-linear\}
 \text{Morita} \{\text{stable} \infty\text{-categories}\}

2) if C is an ∞-category with 0 and finite limits,
 then $\text{Sp}(C) : = \text{holim}_{C \to C}$
 is a stable ∞-category
 (spectrum objects of C

 Prop. Let A be a simplicial commutative ring over \mathbb{Q},
 then the following stable ∞-categories are equivalent:

 (i) dg-modules over the dg-algebra corresponding to A
 (ii) stabilization of simplicial modules over A
 (iii) stabilization of simplicial comm. algebras over A
 (iv) $(\text{Mod}A)$ defined last time
Qcoh

Def. If X is a derived affine scheme represented by simplicial comm. ring A, let $\text{Qcoh}(X) := \text{Mod}_A$.

If X is a derived scheme,

let $\text{Qcoh}(X) := \varinjlim_{S \to X} \text{Qcoh}(S)$

S is affine open subscheme.

If X is a derived stack,

let $\text{Qcoh}(X) := \varinjlim_{S \to X} \text{Qcoh}(S)$

S is affine derived scheme.

Rk. If X is a (classical) scheme, then $\text{hQcoh}(X) \cong D(X)$.

In particular, if X is quasi-projective over a field, then $\text{Qcoh}(X) \cong \text{Mod}_A$ for some $A \in$ simp. comm. algebra (to construct A find a 'generator' of $\text{Qcoh}(X)$ and take its endomorphisms as dg/simplicial algebra).

Question: Does [derived] algebraic cobordism respect Hori’s gradient?

Probably not.

Properties:

- $\text{Qcoh}(X)$ is a stable ∞-category with \boxtimes_X.
- $A \xrightarrow{f} B$ - morphism of simplicial comm. rings
- $\boxtimes_A B = f^* : \text{Mod}_A \hookrightarrow \text{Mod}_B : f^* - \text{forgetful}$
- $X \xrightarrow{f} Y$ - morphism of derived schemes/stacks
 $\text{Qcoh}(Y) \xrightarrow{f^*} \text{Qcoh}(X)$
- $-11 = f^* \circ f^* \circ f^*$

Claim: These definitions agree.

Rk: affine open subschemes of X are in 1-1 correspondence with affine open subschemes of tX.

projection formula $f^*(F) \boxtimes G = f^*(F \boxtimes f^* G)$
Prop. Given a (derived) pullback square
\[
\begin{array}{ccc}
X' & \xrightarrow{f'} & Y' \\
\downarrow^g & & \downarrow^g \\
X & \xrightarrow{f} & Y
\end{array}
\]
of derived schemes, there is a natural equivalence of functors
\[
g^* f^* \simeq g'^* f'^* g'^*
\]

"Proof": enough to consider \(d\text{Aff}\)

- \(\text{Spec } B \xrightarrow{g'} \text{Spec } C\)
- \(\text{Spec } B \xrightarrow{f} \text{Spec } A\)

\[
M \in \text{Qcoh}(\text{Spec } B), \quad g^* f^* (M) = M \otimes_A C
\]
\[
g'^* f'^* (M) = M \otimes_B (B \otimes_C A)
\]

Rk. This "tautological" result uses the derived pullback and does not hold for classical schemes. In fact, let \(X, Y, Y' \in \text{Sch}_{/X} \), \(x' = x \times_X Y'\) then the following are equivalent:

1) \(Lg^* Rf^* = Rf'^* Lg'^* \quad \text{D}(X \to Y')\)

2) the derived pullback is isomorphic to the classical pullback

3) \(f, g\) are Tor-independent (aka transversal)

Under relevant "finiteness" assumptions 1) yields base change formula for \(K_0\) algebraic cobordism of Levine-Morel Kazu satisfy analogous base change under condition 3). Derived algebraic cobordism have base change for all derived pullback squares.
Perfect complexes, vector bundles, Tor-amplitude

Def. $F \in \text{Qcoh}(X)$ is a perfect complex if on every open affine subscheme of X, F is equivalent to an iterated cofiber of shifts of projective modules. $\text{Perf}(X) \subseteq \text{Qcoh}(X)$ is a full subcategory.

Properties:
- $\text{Perf}(X)$ is stable and has \otimes.
- If X is a classical scheme, then perfect complexes are those that are locally \mathbb{Q}-is to a finite complex of vector bundles.

Moreover, if X is defined over a field of char. 0, then $\text{Perf}(X)$ is equivalent to the category of perfect complexes on X.

$\text{Perf}(X)$ admits internal mapping objects \mathcal{F}, \mathcal{G} such that $\text{Hom}_X(\mathcal{F}, \text{Hom}_X(\mathcal{E}, \mathcal{G})) = \text{Hom}_X(\mathcal{F} \otimes \mathcal{E}, \mathcal{G})$.

This is an equivalence of mapping spaces.

Def. $E \in \text{Qcoh}(X)$ is a vector bundle if locally $E \cong \mathcal{O}_X^n$ for some $n \in \mathbb{N}$.

- $E \to G$ is a surjective morphism of vector bundles.
- If $\pi_0(E) \to \pi_0(G)$ is a surjective morphism of vector bundles on tX, then $\text{fib}(\xi)$ is a vector bundle on X.

- A vector bundle E is globally generated if $E \otimes \mathcal{O}_X^n \to E$ is a surjective morphism.

Warning: (If X is not affine), it is not sufficient for E to be globally generated that $\pi_0(E)$ is a globally generated vector bundle on tX.

Note that for $E \in \text{Qcoh}(X)$ we have $\pi_i E$ - classical quasi-coherent on tX.

- For discrete $E \in \text{Qcoh}(X)$, $\pi_k(F \otimes E) = 0$ except $k = |F|.$

Facts: every $F \in \text{Perf}(X)$ has finite Tor-amplitude.

Moreover, F has amplitude if $0 \leq \text{deg} F$ is a vector bundle.
Projective bundles as functors of points, quasi-projective derived schemes

\[
\begin{align*}
X & \quad \text{scheme}, \quad \mathcal{E} \quad \text{loc. free sheaf on } X \\
\pi : \mathcal{P}_X(\mathcal{E}) & \rightarrow \mathcal{P}_X(\mathcal{E}) \\
\{g : Y \rightarrow \mathcal{P}_X(\mathcal{E})\} & \simeq \{s : Y \rightarrow \mathcal{P}_X(\mathcal{E}) \mid n_Y s = \text{id}_Y\} \\
Y & \rightarrow X \\
\text{So, what is a section of } \pi? \\
\end{align*}
\]

For every "point" of \(X \) one has to choose a line in \(\mathcal{E}_x \), or, equivalently, a linear quotient of \(\mathcal{E}_x \).

\[
\begin{align*}
\{s : X \rightarrow \mathcal{P}_X(\mathcal{E}) \mid \pi \circ s = \text{id}_X\} & \simeq \{\mathcal{E}_x \rightarrow \mathcal{L} \mid \mathcal{L} \text{ is a line bundle on } X\} \\
\mathcal{E}_x & \rightarrow \mathcal{L} = s^*(\pi^*\mathcal{E} \rightarrow \mathcal{O}(1)) \\
\end{align*}
\]

\[\mathcal{O}(1) \]

Fact: \(\text{Qcoh, Perf, Vect : } \text{Aff}^{op} \rightarrow \text{Cat}_\infty \) (\(\text{Sp} \rightarrow \text{Spec} \)) satisfy fpqc descent (are derived stacks).

Note that if \(F \) has descent, then \(\text{Mor}(F) : X \rightarrow \text{Fun}(A, F(x)) \) also satisfies descent, because \(\text{Fun}(A, -) \) is left exact.

\[\begin{array}{c}
\text{Mor}_{\text{Vect}}(\text{Vect}) \xrightarrow{\text{fib}} \text{Perf} \\
\text{Mor}_{\text{Vect}}(\text{Vect}) \rightarrow \text{Vect}_{\text{n+1}} \\
\text{Mor}_{\text{Vect}}(\text{Vect}) \rightarrow \text{Vect}_{\text{n+1}} \\
\text{Mor}_{\text{Vect}}(\text{Vect}) \rightarrow \text{Mor}_{\text{Vect}}(\text{Vect}) \\
\end{array}\]

This defines \(\mathcal{P}_X(\mathcal{E}) \) as a derived stack.

Properties:
1) there exist canonical \(\pi : \mathcal{P}_X(\mathcal{E}) \rightarrow X \)

- Line bundle \(\mathcal{O}(1) \) on \(\mathcal{P}_X(\mathcal{E}) \), \(Y : \pi^*\mathcal{E} \rightarrow \mathcal{O}(1) \)

2) \(\mathcal{P}_X(\mathcal{E}) \) is a derived pullback square

\[
\begin{array}{c}
\mathcal{P}_X(\mathcal{E}) \\
\downarrow \pi_X \quad \downarrow \pi_Y \\
Y \\
\rightarrow X
\end{array}
\]

3) \(\mathcal{P}_X(\mathcal{E}) \) is a derived scheme

Proof: Zariski locally \(\mathcal{P}_X(\mathcal{E}) \) is covered by \(\mathbb{A}^{n+1} \setminus \{0\} \)

Def.: \(f : X \rightarrow Y \) is a closed immersion/proper morphism

- \(tf : tX \rightarrow tY \) is a closed immersion/proper morphism.

- \(X \rightarrow U \times Y \rightarrow Y \) when \(\pi \) is proper & quasi-projective

Prop.: \(X \in \text{Sch}_k \), 1) \(X \) is quasi-proj. \(\iff \exists L - \text{ample line bundle on } X \)

2) if \(\mathcal{O}(1) \) is ample, \(E - \text{vector bundle, then } E(n) \) is globally generated

3) if \(X \) is quasi-proj., \(\text{Perf}_{\text{coh}}(\mathcal{E}) \approx \{F_d \rightarrow \cdots \rightarrow F_0 \mid F_i \in \text{Vect}_{\text{d}}\} \)
Total space of vector bundle, derived vanishing locus

X - derived scheme, $F \in QCoh(X)$, $\pi(F) = 0$, i.e.

Fact: If derived scheme $W(F) \to X$, representing the functor $Y \mapsto X \to \text{Hom}_X(F, \mathcal{O}_Y)^\wedge = H^0(f^*(F), f_*\mathcal{O}_Y)$

locally, $W(F)$ can be defined as derived affine scheme given by $\text{Sym}^*_X(F)$

Def. If E is a vector bundle on X, then $W(E^\vee) \to X$ is the geometric vector bundle associated to E

and usually also denoted by $E \to X$.

Prop. The space of sections of $E \to X$ is canonically identified with $\text{Hom}_X(O_X, E)$

"proof": $\text{Hom}_X(E^\vee, O_X) \cong \text{Hom}_X(O_X, E)$

Remark. If X is a classical scheme, e.g. affine Spec A, F is a bounded complex of projective A-modules of $f.t.$, then $W(F)$ is an algebraic (non-derived) ∞-stack

where $H^i(F) = 0$ for $i > n$.

Eg. if F is $F^\vee \to F$, then $V(F)$ is an Artin stack. These were studied under the name of sheaves of Picard categories by Deligne and others.

Def. $X \in \text{Sch}$, $E \in \text{Veet}(X)$, $s \in \text{Hom}_X(O_X, E)$

the derived vanishing locus $V(s)$ is defined by

$V(s) \to X$

\downarrow $
abla$

$X \to E$

Prop. Let F be the cofibre of $s^\vee: E^\vee \to O_X$ in \mathcal{D}_X.

Then $V(s)$ is naturally identified as $W(F)$.

"Proof": morphisms from Y to $V(s)$ correspond to $f: Y \to X$ & homotopy $Y \cong E$,

i.e. $f^* E^\vee \to O_Y$

morphisms from Y to $W(F)$ correspond to $f: Y \to X$ & $f^* F \to O_Y$

Rk. $V(o)$ will give the top Chern class of E.

Note that $V(o) = \text{"Spec} \text{Sym}^*(E^\vee \wedge_n)$"
Inclusion of projective bundles

Let \(X \in \text{Sch}, \; E \to F \in \text{Vect}(X) \) s.t. \(F' \to E' \)

we get \(\pi^{*}_{IP(E)} \; F' \to \pi^{*}_{IP(E)} \; E' \to (U_{IP(E)})_{(1)} \)

which yields projection \(PI(E) \to IP(F) \)

| It is a closed immersion |

Projective bundles will come up when derived blow-ups are performed, then the following result will be needed.

Prop. Let \(X \in \text{Sch}, \; E, F \in \text{Vect}(X) \). \(\pi : IP(E) \oplus F \to X \)

and consider \(s \in \text{Hom}(U_{IP(E) \oplus F}, \pi^{*}(F) \otimes \mathcal{O}(1)) \)

\(= \text{Hom}(U_{X}, F \otimes \pi^{*}(\mathcal{O}(1))) \cong \text{Hom}(F', E' \oplus F') \)

Corresponding to the inclusion.

Then \(V(s) \hookrightarrow IP(E) \oplus F \) can be identified with \(IP(E)^{0} \to IP(E) \).

"Proof":

1. Find a morphism \(IP(E) \to V(s) \)
2. Prove that it is an equivalence
3. \(IP(E) \to V(s) \to IP(E) \oplus F \)

...}

To construct \(f \) we need to find homotopy between \(j^{*}(s) \) and zero in the space of \(\text{Hom}(U_{IP(E)}, j^{*}(\pi^{*}(F) \otimes \mathcal{O}(1))) \cong \text{Hom}(F', E') \)

The idea is to show that \(j \) we can identify with \(\text{Hom}_{X}(F', E' \oplus F') \to \text{Hom}_{X}(F', E') \)

with the map corresponding to the canonical projection.

After this identification \(j^{*}(s) \) is 0.

\(\begin{align*}
\text{(1) One has to show the following:} \\
\text{it is an isomorphism after truncation} \\
\text{IP(E) \to V(s) is quasi-smooth embedding of virtual codimension 0} \\
\text{for this suffices to show IP(E), V(s) are quasi-smooth over } X \\
\text{But virtual codimension 0 means locally cut out by 0 equations.}
\end{align*} \)