Anisotropic wave dispersion and band-gaps in mechanical metamaterials via the relaxed micromorphic model

Marco V. d’Agostino$^{1,∗}$, Angela Madeo1,**, Gabriele Barbagallo1,***, I. Dumitrel Ghiba2,†, Bernhard Eidel3,‡, and Patrizio Neff4,§

1 Université de Lyon, 20 avenue Albert Einstein, 69621, Villeurbanne cedex
2 Alexandru Ioan Cuza University of Iași, Blvd. Carol I, no. 11, 700506 Iași
3 Universität Siegen, Paul-Bonatz-Straße 9-11 57076 Siegen
4 Universität of Duisburg-Essen, Thea-Leymann Straße 9, 45127 Essen

We propose a continuum model (the relaxed micromorphic model) to describe band-gap phenomena in metamaterials.

1 Introduction

Band-gap metamaterials are able to “stop” or “bend” the propagation of waves of light or sound with no energetic cost thanks to their architectured microstructures. Starting from considering an anisotropic unit cell, the global metamaterial can exhibit, at the macroscopic scale, the following behaviors:

- anisotropic behavior with respect to deformation (the deformation patterns vary when varying the direction of application of the externally applied loads),
- anisotropic behavior with respect to band-gap properties (the width of the band-gap varies when varying the direction of propagation of the travelling wave).

In this proceeding, we want to present a continuum model which is able to describe the exotic behavior of metamaterials in a very precise way. Among all possible choices present in the literature, the relaxed micromorphic model [1–8] is the only one which allows us to describe the presence of band-gaps in metamaterials.

We enrich the kinematics of classical elasticity by introducing a tensor field P, known as the micro-distortion tensor field, which adds new degrees of freedom allowing for the description of extra (optic) dispersion curves and thus, for including the effect of microstructure on the dynamical behavior of heterogeneous materials.

The possibility of obtaining a natural generalization of classical elasticity resides in the choice of the constitutive energy densities.

Energy of the relaxed micromorphic model

$$J (u, t, \nabla u, t, P, t) = \frac{1}{2} \langle \rho u, t, u, t \rangle + \frac{1}{2} \langle J_{\text{micro, sym}} P, \text{sym} P \rangle + \frac{1}{2} \langle J_{\text{c, skew}} P, \text{skew} P \rangle$$

$$W (\nabla u, P, \text{Curl} P) = \frac{1}{2} \langle C_{\text{c, sym}} (\nabla (u - P)), \text{sym} (\nabla (u - P)) \rangle + \frac{1}{2} \langle C_{\text{micro, sym}} P, \text{sym} P \rangle$$

$$\mu L^2 c \frac{\text{Curl} P, \text{Curl} P}{2}$$

* Corresponding author, email: marco-valerio.dagostino@insa-lyon.fr, GEOMAS INSA-Lyon
** email: angela.madeo@insa-lyon.fr, GEOMAS INSA-Lyon
*** email: gabriele.barbagallo@insa-lyon.fr, GEOMAS INSA-Lyon
† email: dumitrel.ghiba@uaic.ro, Department of Mathematics
‡ email: bernhard.eidel@uni-siegen.de, Institut für Mechanik, Heisenberg-group
§ email: patrizio.neff@uni-due.de, Head of Lehrstuhl für Nichtlineare Analysis und Modellierung
with
\[
\begin{align*}
\rho &: \Omega \to \mathbb{R}^+ \quad \text{macro-inertia mass density,} \\
J_{\text{micro}} &: \text{Sym}(3) \to \text{Sym}(3) \quad \text{classical 4th order free micro-inertia density tensor,} \\
T &: \text{Sym}(3) \to \text{Sym}(3) \quad \text{classical 4th order gradient micro-inertia density tensor,} \\
J_{\text{c}}, T_{\text{c}} &: \mathfrak{so}(3) \to \mathfrak{so}(3) \quad 4\text{th order coupling tensors with 6 independent components,} \\
C_{\text{e}}, C_{\text{micro}} &: \text{Sym}(3) \to \text{Sym}(3) \quad \text{classical 4th order elasticity tensors with 21 independent components,} \\
C_{\text{c}} &: \mathfrak{so}(3) \to \mathfrak{so}(3) \quad \text{4th order coupling tensors with 6 independent components,}
\end{align*}
\]
and \(L_{\text{c}}\) is the characteristic length of the relaxed micromorphic model. The derived strong equations are
\[
\rho u_{t,t} - \text{Div} \left[T \text{ sym } \nabla u_{t,t} + T_{\text{c}} \text{ skew } \nabla u_{t,t} \right] = \text{Div} \left[C_{\text{e}} \text{ sym } (\nabla u - P) + C_{\text{c}} \text{ skew } (\nabla u - P) \right],
\]
\[
J_{\text{micro}} \text{ sym } P_{t,t} = C_{\text{e}} \text{ sym } (\nabla u - P) - C_{\text{micro}} \text{ sym } P - \mu L_{\text{c}}^2 \text{ sym } \text{Curl Curl } P
\]
\[
J_{\text{c}} \text{ skew } P_{t,t} = C_{\text{c}} \text{ skew } (\nabla u - P) - \mu L_{\text{c}}^2 \text{ skew } \text{Curl Curl } P.
\]

2 Numerical results

The pertinence of the proposed model is displayed in the dispersion curves, which are in good agreement with their counterparts, obtained by means of the Bloch-Floquet analysis (see Figure 1).

![Dispersion curves](image)

Fig. 1: Comparison between our relaxed micromorphic continuum model and the COMSOL® one (Bloch-Floquet analysis). In (a) we can see the microstructure considered to generate the infinite periodic metamaterial. In (b) we plot the dispersion branches for \(\hat{k} = (1, 0, 0)\) and in (c) for \(\hat{k} = (\sqrt{2}/2, \sqrt{2}/2, 0)\). Dotted lines represent COMSOL® dispersion curves, continuous lines represent the dispersion curves obtained with the relaxed micromorphic model. The two directions \(\hat{k}\) are used in the fitting procedure.

References

