Anisotropic polyconvex energies on the basis of crystallographic motivated structural tensors

J. Schröder a,*, P. Neff b, V. Ebbing a

a Institut für Mechanik, Fakultät für Ingenieurwissenschaften, Abteilung Bauwissenschaften, Universität Duisburg-Essen, Universitätsstr. 15, 45117 Essen, Germany
b Fachbereich Mathematik, Technische Universität Darmstadt, 64289 Darmstadt, Schloßgartenstr. 7, Germany

A R T I C L E I N F O

Article history:
Received 22 August 2007
Accepted 15 August 2008

Keywords:
Anisotropy
Hyperelasticity
Polyconvexity
Existence of minimizers
Crystal classes

A B S T R A C T

In large strain elasticity the existence of minimizers is guaranteed if the variational functional to be minimized is sequentially weakly lower semicontinuous (s.w.l.s.) and coercive. Therefore, polyconvex functions which are always s.w.l.s. are usually considered. For isotropic as well as for transversely isotropic and orthotropic materials constitutive functions that are polyconvex already exist. The main goal of this contribution is to provide a new method for the construction of polyconvex hyperelastic models for more general anisotropy classes. The fundamental idea is the introduction of positive definite second-order structural tensors $G = HH^T$ encoding the anisotropies of the underlying crystal. These tensors can be viewed as a push-forward of a cartesian metric of a fictitious reference configuration to the real reference configuration. Here the driving transformations H in the push-forward operation are mappings of the cartesian base vectors of the fictitious configuration onto crystallographic motivated base vectors. Restrictions of this approach are based on the polyconvexity condition as well as on the usage of second-order structural tensors and pointed out in detail.

© 2008 Elsevier Ltd. All rights reserved.

1. State of the art

The existence of minimizers is based on the notion of sequential weak lower semicontinuity. If the functional to be minimized is s.w.l.s. and the coercivity condition is fulfilled the existence of minimizers is guaranteed. The concept of quasiconvexity, introduced by Morrey (1952), ensures the s.w.l.s. condition if further growth conditions are satisfied. This integral inequality condition implies that the state of minimum energy for a homogeneous body under homogeneous Dirichlet boundary conditions is itself homogeneous. If the stored energy is not quasiconvex, the initially homogeneous material body could break down into coexisting stable phases, see Krawietz (1986), Ball and James (1992), Silhavý (1997), Müller (1999), and the references therein. A drawback of the quasiconvexity condition is that the growth condition to be satisfied precludes the physically reasonable requirement $W(F) \to \infty$ for $\det F \to 0^+$, see problem 1 in Ball (2002).

A more attractive notion is, therefore, the polyconvexity condition introduced by Ball (1977a, b), because we only have to prove the convexity of the free energy function with respect to the argument $(F, \text{Cof } F, \det F) \in \mathbb{R}^{19}$, instead of evaluating the (non-local) integral inequality of the quasiconvexity condition. Considering smooth stored-energy functions the (strict) rank-one convexity implies the (strict) Legendre–Hadamard condition. This is a suitable condition in order to obtain physically reasonable material models, because hereby, the existence of real wave speeds for the corresponding linearization are guaranteed. Instabilities in fiber-reinforced elastic materials induced by loss of ellipticity are discussed in...
Merodio and Ogden (2003) and Merodio and Neff (2006). For finite-valued, continuous functions we may recapitulate the important implications, that polyconvexity implies quasiconvexity and this implies rank-one convexity; the generalized convexity conditions are depicted in Fig. 1. Note that the inverse implications are not true, in this context see also Dacorogna (1989), Silhavy (1997), Ciarlet (1988) and Marsden and Hughes (1983).

For isotropic materials there exist some models, e.g., the Ogden-, Mooney-Rivlin- and Neo-Hooke-type free energy functions, which satisfy the polyconvexity conditions; in this context see also Steigmann (2003), Hartmann and Neff (2003) and Mielke (2005). In modern applications anisotropic material behavior is often described by isotropic tensor functions. These functions are a result of the isotropicization theorem of anisotropic tensor functions, which states that an anisotropic constitutive law of a material point, which possesses a physical symmetry group, can be formally expressed as an isotropic function by introducing a set of structural tensors, provided that the set characterizes the underlying symmetry group of the material. Here the structural tensors act as additional agencies in the constitutive laws. The concept of structural tensors was first introduced in an attractive way by Boehler (1978, 1979), see also Boehler (1987). Overviews of representations of tensor functions are given in Zhang and Rychlewski (1990), Rychlewski and Zhang (1991) and Zheng and Spencer (1993). An unified approach summarizing the developments in this field of research can be found in the outstanding review of Zheng (1994). Anisotropic polyconvex energies, especially for the case of transverse isotropy and orthotropy, have been first proposed in Schröder and Neff (2001, 2003). Modifications and case studies in the framework presented in Schröder and Neff (2003) are documented in Schröder et al. (2005), Balzani (2006), Itskov and Aksel (2004) and Markert et al. (2005). An adjustment of an anisotropic polyconvex model for the simulation of arterial walls to experimental data is given in Balzani et al. (2006). A direct extension of Schröder and Neff (2003) to materials with cubic symmetry is proposed in Kambouchev et al. (2007). Here the authors introduced a single fourth-order structural tensor that characterizes the associated symmetry group, see Zheng and Spencer (1993).

2. Mechanical and mathematical preliminaries

The body of interest in the reference configuration is denoted by \(B_0 \subset \mathbb{R}^3 \), parametrized by \(X \), and the current configuration by \(B_t \subset \mathbb{R}^3 \), parametrized by \(x \). The nonlinear deformation map \(\varphi_t : B_0 \rightarrow B_t \) at time \(t \in \mathbb{R}_+ \) maps points \(X \in B_0 \) onto points \(x \in B_t \). The deformation gradient \(F \) is defined by

\[
F(X) := \text{Grad} \varphi_t(X),
\]

with the Jacobian \(J(X) := \det F(X) > 0 \). For the geometrical interpretations of some polynomial invariants we often use expressions based on the mappings of the infinitesimal line \(dx \), area \(da = N \, da \) and volume elements \(dV \), respectively. These material quantities are mapped to their spatial counterparts \(dx, \, da = n \, da \) and \(dv = \det(F) \, dV \) via

\[
dx = F \, dx, \quad n \, da = \text{Cof}(F) N \, da \quad \text{and} \quad dv = \det(F) \, dV, \tag{2.2}
\]

See Fig. 2. Eq. (2.2) is the well-known Nanson’s formula. It should already be mentioned that the argument \((F, \text{Cof } F, \det F)\) plays an important role in the definition of polyconvexity.

For the solution of boundary value problems in finite elasticity we assume the existence of a free energy function \(W(F) \). The underlying boundary value problem is governed by the variational principle of the potential energy of the whole.
system with respect to \(\varphi \), i.e.,

\[
\Pi(\varphi) = \int_{\Omega_0} W(F) \, dV - \int_{\Omega_0} \rho_0 b \cdot \varphi \, dV - \int_{\Gamma_0} \bar{t} \cdot \varphi \, dA \rightarrow \text{stat.}
\]

with \(\varphi = \varphi_0 \) on \(\partial \Omega_0 \),

\[(2.3) \]

and the referential density \(\rho_0 \), the given body force \(b \) and the surface tractions \(\bar{t} \). In order to meet the objectivity condition (principle of material frame indifference) a priori, we use the well-known reduced constitutive equations in terms of the right Cauchy–Green tensor

\[
C = F^T F,
\]

and put \(\psi(C) = W(F) \). The solution of Eq. (2.3) has to be computed from the condition \(\delta \Pi(\varphi, \delta \varphi) = 0 \), with the first variation of \(\Pi(\varphi) \)

\[
\delta \Pi(\varphi, \delta \varphi) = \int_{\Omega_0} P \cdot \delta F \, dV - \int_{\Omega_0} \rho_0 b \cdot \delta \varphi \, dV - \int_{\Gamma_0} \bar{t} \cdot \delta \varphi \, dA,
\]

with

\[
P = \frac{\partial \psi(C)}{\partial F} = \frac{\partial \psi(C)}{\partial C} \frac{\partial C}{\partial F} = FS \quad \text{with} \quad S = 2 \frac{\partial \psi}{\partial C},
\]

which yields the Euler–Lagrange equations

\[
\text{Div}(FS) + \rho_0 \bar{b} = \mathbf{0} \quad \text{and} \quad P \bar{N} = \bar{t} \quad \text{on} \partial \Omega_0,
\]

where \(P \) and \(S \) denote the first and second Piola–Kirchhoff stress tensor, respectively. In order to guarantee the existence of solutions the underlying functional must be s.w.l.s.—this is the case if the functional is quasiconvex and satisfies the growth condition or if it is polyconvex, see Fig. 1—and must meet a coercivity condition. In the following we will focus on the construction of anisotropic polyconvex energies, because it is more tractable for the explicit evaluations of specific free energy functions than the integral inequality of the quasiconvexity condition.

3. Polyconvexity of general anisotropic energies

The notion of polyconvexity—underlying the first general existence result in finite elasticity—has been introduced by Ball (1977a, b).

Polyconvexity: \(F \mapsto W(F) \) is polyconvex if and only if there exists a function \(P : \mathbb{R}^{3 \times 3} \times \mathbb{R}^{3 \times 3} \times \mathbb{R} \rightarrow \mathbb{R} \) (in general non-unique) such that

\[
W(F) = P(F, \text{Cof} \, F, \text{det} \, F)
\]

and the function \(\mathbb{R}^{19} \rightarrow \mathbb{R}, (F, \text{Cof} \, F, \text{det} \, F) \mapsto P(F, \text{Cof} \, F, \text{det} \, F) \) is convex for all points \(X \in \mathbb{R}^3 \).

In the above definition and in the sequel we omit the \(X \)-dependence of the individual functions if there is no danger of confusion. The cofactor of \(F \) is defined by \(\text{Cof} \, F = \text{det}(F)F^{-T} \) for all invertible \(F \).

For the formulation of anisotropic hyperelastic energies further restrictions, reflecting the consequences of the principle of material symmetry, have to be taken into account. For this we have to ensure the invariance of \(W(F) \) with respect to the symmetry transformations \(W(FQ^T) \) for all \(Q \in \mathcal{G} \subset O(3) \), where \(\mathcal{G} \) represents the so-called material symmetry group. Thus the reduced constitutive equations must fulfill

\[
\psi(C) = \psi(QCQ^T) \quad \forall Q \in \mathcal{G},
\]

\[(3.1) \]
which is the principle of material symmetry. The main idea of our proposed concept is the introduction of a structural tensor G—which can be interpreted as an anisotropic metric tensor, in the sense of a push-forward of the cartesian metric of a fictitious reference configuration onto the real reference configuration \mathcal{B}_0, more details are discussed in the sequel—reflecting the anisotropies of the underlying crystal class. As implied by the notion anisotropic metric, G has to be symmetric and positive definite. For the construction of anisotropic free energy functions we will focus on functional bases in terms of the powers of the traces of the right Cauchy–Green tensor and the tensor G. Therefore we have to satisfy for the scalar products

$$ C \cdot G = \mathbf{Q} \mathbf{C} \mathbf{Q}^T. \quad G = C \cdot \mathbf{Q}^T \mathbf{Q}^T \quad \forall \mathbf{Q} \in \mathcal{B} \subset O(3). $$

(3.2)

Finally we must ensure the invariance requirement for the yet unknown metric tensor

$$ G = \mathbf{Q} \mathbf{G} \mathbf{Q}^T \quad \forall \mathbf{Q} \in \mathcal{B} \subset O(3), $$

(3.3)

thus G has to be \mathcal{B}-invariant. Furthermore, generic anisotropic functions of the type

$$ (\text{tr}[F^T G])^k = (F^T F \cdot G)^k $$

(3.4)

and

$$ (\text{tr}[\text{Cof}[F^T] \text{Cof}[G]])^k = (\text{Cof}[F^T F] \cdot G)^k, $$

(3.5)

with $k \geq 1$ and $G \in \text{PSym}$ are convex with respect to the assigned arguments F and $\text{Cof} F$, respectively, and therefore polyconvex. The convexity of $(\text{tr}[F^T G])^k$, $k \geq 1$ can be proved by the positivity of the second derivative. Here we exploit the fact that every symmetric, positive (semi-)definite tensor G can be written as $G = HH^T$.

Proof. With the identity $(\text{tr}[F^T F])^k = \|F\|^2k^k = \langle FH, FH \rangle^k$ we obtain

$$ D_{x}(\langle FH, FH \rangle^k), \xi = 2k\langle FH, FH \rangle^{k-1} \langle FH, \xi H \rangle $$

$$ D_{x}^2(\langle FH, FH \rangle^k), (\xi, \eta) = 2k\langle FH, FH \rangle^{k-1} \langle \xi H, \xi H \rangle + 4k(k-1)\langle FH, FH \rangle^{k-2} \langle FH, \xi H \rangle^2 = 2k\|FH\|^2(2k-2)\|\xi H\|^2 + 4k(k-1)\|FH\|^2(4k-4)\langle FH, \xi H \rangle^2 \geq 0. $$

(3.6)

The proof of the convexity of $(\text{tr}[\text{Cof}[F^T] \text{Cof}[G]])^k$, $k \geq 1$ is analogous when replacing F by $\text{Cof} F$.

Since the proof of polyconvexity (3.6) is given for every $G \in \text{PSym}$ (and indeed for every symmetric and positive (semi-)definite tensor), we are now able to construct anisotropic invariants for every anisotropy class, which automatically satisfy the polyconvexity condition. We only have to insert the corresponding tensor $G \in \text{PSym}$ into Eqs. (3.4) and (3.5).

From tensor representation theory it is well known that using \mathcal{B}-invariant first- and second-order structural tensors lead to complete representations for triclinic, monoclinic and rhombic symmetries as well as for transverse isotropy. For the characterization of the further usual mechanical symmetry groups higher order structural tensors are necessary: for the trigonal, tetragonal and cubic systems fourth-order and for the hexagonal systems sixth-order structural tensors are necessary, see Zheng and Spencer (1993) and Zheng (1994). An analysis of the usage of second-order structural tensors for the description of the anisotropies of the 32 crystal classes is given in Xiao (1996).

3.1. Generic polyconvex anisotropic functions

We construct now generic anisotropic polyconvex energy functions by using the anisotropic invariants given in Eqs. (3.4) and (3.5). Here, we consider an additive decomposition of the free energy in isotropic and anisotropic terms, i.e.,

$$ \psi = \psi^{iso}(I_1, I_2, I_3) + \psi^{aniso}(I_1, I_2, I_3, J_4, J_5). $$

(3.7)

Hence, the second Piola–Kirchhoff stresses consist of the two terms $S = S^{iso} + S^{aniso}$:

$$ S^{iso} = 2 \frac{\partial \psi^{iso}}{\partial C} \quad \text{and} \quad S^{aniso} = 2 \frac{\partial \psi^{aniso}}{\partial C}. $$

(3.8)

In Eq. (3.7) the expressions I_1, I_2 and I_3 represent the three principal invariants

$$ I_1 = \text{tr} \mathbf{C} = \mathbf{1} \cdot \mathbf{C}, \quad I_2 = \text{tr}[\text{Cof} \mathbf{C}] = \mathbf{1} \cdot \text{Cof} \mathbf{C}, \quad I_3 = \text{det} \mathbf{C}. $$

(3.9)

The first and second derivatives of the polyconvex base functions (3.9) are

$$ \partial_C(\mathbf{1} \cdot \mathbf{C}) = \mathbf{1}, \quad \partial_C^2(\mathbf{1} \cdot \mathbf{C}) = \mathbf{0}, \quad \partial_C(\mathbf{1} \cdot \text{Cof} \mathbf{C}) = I_1 \mathbf{1} - \mathbf{C}, \quad \partial_C^2(\mathbf{1} \cdot \text{Cof} \mathbf{C}) = \mathbf{1} \otimes I_1 - \mathbf{1} \otimes \mathbf{1}, \quad \partial_C(\text{det} \mathbf{C}) = I_3 \mathbf{C}^{-1}, \quad \partial_C^2(\text{det} \mathbf{C}) = I_3 \mathbf{C}^{-1} \otimes \mathbf{C}^{-1} - I_3 \mathbf{C}^{-1} \otimes \mathbf{C}^{-1}. $$

(3.10)
where \(A \otimes B \) denotes the tensor product of second-order tensors defined as
\[
(A \otimes B)(a \otimes b) = Aa \otimes Bb \quad \forall A, B \in \mathbb{R}^{3 \times 3}, \quad a, b \in \mathbb{R}^3,
\]
(3.11)
see Halmos (1958) and de Boer and Schröder (2008). For the isotropic part \(\psi^{\text{iso}} \) we choose a compressible Mooney-Rivlin model of the form
\[
\psi^{\text{iso}} = \alpha_1 I_1 + \alpha_2 I_2 + \delta_1 I_1 - \delta_2 \ln(\sqrt{I_3}) \quad \forall \alpha_1, \alpha_2, \delta_1, \delta_2 \geq 0.
\]
(3.12)
In detail, the isotropic part of the stress tensor is computed via
\[
S^{\text{iso}} = 2 \left[\frac{\partial \psi^{\text{iso}}}{\partial I_1} + \frac{\partial \psi^{\text{iso}}}{\partial I_2} \right] - \frac{\partial \psi^{\text{iso}}}{\partial I_3} C - \frac{\partial \psi^{\text{iso}}}{\partial I_3} I_3 C^{-1}.
\]
(3.13)
The remaining polyconvex base functions in the anisotropic part of Eq. (3.7) are defined as
\[
J_{qj} = \text{tr} (CG_j), \quad J_{sj} = \text{tr} (C(1)G_j),
\]
(3.14)
governed by the \(j \)-th metric tensor \(G_j \). Furthermore, the trace of \(G_j \) is denoted by
\[
g_j := \text{tr} G_j.
\]
(3.15)
The first and the second derivatives of the generic anisotropic invariants (3.14) are
\[
\partial_1 (G_j \cdot C) = G_j, \quad \partial_2 (G_j \cdot C) = 0.
\]
(3.16)
The derivatives of (3.14) are given by the expressions
\[
\partial_1 (G_j \cdot \text{Cof}C) = J_{qj} C^{-1} - I_3 C^{-1} G_j C^{-1}
\]
\[
\partial_2 (G_j \cdot \text{Cof} C) = J_{qj} (C^{-1} \otimes C^{-1} - C^{-1} \otimes C^{-1}) - \{\text{Cof}C \otimes C^{-1} G_j C^{-1} + C^{-1} G_j C^{-1} \otimes \text{Cof}C \}
\]
\[
+ \{\text{Cof}C \otimes C^{-1} G_j C^{-1} + C^{-1} G_j C^{-1} \otimes \text{Cof}C \}.
\]
(3.17)

Model problem I: Suitable anisotropic energies in terms of the yet unspecified individual polyconvex functions \(f_A(J_{qj}), f_{5r}(J_{sj}) \) are, e.g.,
\[
\psi_{1}^{\text{aniso}} = \sum_{r=1}^{n} \sum_{j=1}^{m} \left[f_A(J_{qj}) + f_{5r}(J_{sj}) \right].
\]
(3.18)
For this choice we obtain \(S_{1}^{\text{aniso}} := 2 \partial_1 \psi_{1}^{\text{aniso}} \) with
\[
S_{1}^{\text{aniso}} = 2 \sum_{r=1}^{n} \sum_{j=1}^{m} \left[\frac{\partial f_A}{\partial J_{qj}} G_j - \frac{\partial f_{5r}}{\partial J_{sj}} G_j \right].
\]
(3.19)
In order to satisfy the natural state condition of a stress-free reference configuration in the unloaded system we have to enforce \(S_{1}^{\text{aniso}} = 0 \), i.e.,
\[
\left(\frac{\partial \psi^{\text{iso}}}{\partial I_1} + 2 \frac{\partial \psi^{\text{iso}}}{\partial I_2} + \frac{\partial \psi^{\text{iso}}}{\partial I_3} + \sum_{r=1}^{n} \sum_{j=1}^{m} \frac{\partial f_A}{\partial J_{qj}} G_j - \frac{\partial f_{5r}}{\partial J_{sj}} G_j \right) I = 0.
\]
(3.20)
with \(I_1 = 3, \ I_2 = 3, \ I_3 = 1 \), \(J_{qj} = g_j \) and \(J_{sj} = g_j \) at \(C = 1 \). Evaluating the special isotropic energy (3.12) at \(C = 1 \) yields
\[
\delta_2 = 2 \left(\alpha_1 + 2 \alpha_2 + \delta_1 + \sum_{r=1}^{n} \sum_{j=1}^{m} \frac{\partial f_{5r}}{\partial J_{sj}} g_j \right) \geq 0.
\]
(3.21)
In general, Eq. (3.20) has to be fulfilled for each metric tensor \(G_j \) independently, thus we conclude
\[
\sum_{r=1}^{n} \left[\frac{\partial f_A}{\partial J_{qj}} - \frac{\partial f_{5r}}{\partial J_{sj}} \right] = 0 \quad \forall G_j.
\]
(3.22)
A further more restrictive assumption is based on the enforcement of the latter for each constant \(r \) independently, i.e.,
\[
\forall r : f_A^{4r} = f_{5r}^{4r}.
\]
(3.23)

Model problem II: In order to obtain a free energy representation with a decoupling between the isotropic and anisotropic material parameters we consider a set of generic polyconvex functions in terms of \(I_3, J_{qj}, \) and \(J_{sj} \). In detail we are interested in enforcing the stress-free reference configuration condition for the anisotropic energy term \(\sum_{r,j} f_{5r} g_j I \), appearing in
Eq. (3.20), independently for each r,j. In this situation Eqs. (3.20) and (3.21) appear in the form

\[\left(\frac{\partial \psi^{\text{iso}}}{\partial \epsilon_{ij}} + 2 \frac{\partial \psi^{\text{iso}}}{\partial \epsilon_{ij}^{\text{iso}}} + \frac{\partial \psi^{\text{iso}}}{\partial \epsilon_{ij}^{\text{aniso}}} \right) \mathbf{1} = \mathbf{0} \Rightarrow \delta_2 = 2(x_1 + 2x_2 + \delta_1). \] (3.24)

The modification (3.24) for the condition of a stress-free reference configuration associated to the isotropic energy contributions is possible, if we choose anisotropic energies like

\[\psi^{\text{aniso}}_2 = \sum_{r=1}^n \sum_{j=1}^m \left[f_{3rj}(l_3) + f_{4rj}(l_4) + f_{5rj}(l_5) \right]. \] (3.25)

The second Piola–Kirchhoff stresses for the anisotropic energy contribution (3.25) denoted with $S^{\text{aniso}}_2 := 2 \frac{\partial \psi^{\text{aniso}}}{\partial \epsilon}$ are

\[S^{\text{aniso}}_2 = 2 \sum_{r=1}^n \sum_{j=1}^m \left(\frac{\partial f_{3rj}}{\partial \epsilon_{ij}^{\text{iso}}} I_3 + \frac{\partial f_{5rj}}{\partial \epsilon_{ij}^{\text{iso}}} J_5 \right) + \frac{\partial f_{4rj}}{\partial \epsilon_{ij}} G_j - \frac{\partial f_{5rj}}{\partial \epsilon_{ij}^{\text{iso}}} I_3 C^{-1} G_j C^{-1} \right]. \] (3.26)

Let us enforce the natural state condition independently for Eqs. (3.13) and (3.26). For the latter we get

\[\sum_{r=1}^n \sum_{j=1}^m \left(\frac{\partial f_{3rj}}{\partial \epsilon_{ij}^{\text{iso}}} I_3 + \frac{\partial f_{5rj}}{\partial \epsilon_{ij}^{\text{iso}}} J_5 \right) + \frac{\partial f_{4rj}}{\partial \epsilon_{ij}} G_j - \frac{\partial f_{5rj}}{\partial \epsilon_{ij}^{\text{iso}}} I_3 C^{-1} G_j C^{-1} \right] = \mathbf{0}, \] (3.27)

with g_j defined in Eq. (3.15). In general, we conclude

\[\sum_{r=1}^n \sum_{j=1}^m \left(\frac{\partial f_{3rj}}{\partial \epsilon_{ij}^{\text{iso}}} I_3 + \frac{\partial f_{5rj}}{\partial \epsilon_{ij}^{\text{iso}}} J_5 \right) = 0 \quad \text{and} \quad \sum_{r=1}^n \left(\frac{\partial f_{4rj}}{\partial \epsilon_{ij}} - \frac{\partial f_{5rj}}{\partial \epsilon_{ij}^{\text{iso}}} I_3 \right) = 0 \quad \forall G_j, \] (3.28)

or more restrictive for all r and j independently

\[\frac{\partial f_{5rj}}{\partial \epsilon_{ij}^{\text{iso}}} = - \frac{\partial f_{3rj}}{\partial \epsilon_{ij}^{\text{iso}}} \quad \text{and} \quad \frac{\partial f_{4rj}}{\partial \epsilon_{ij}} = \frac{\partial f_{5rj}}{\partial \epsilon_{ij}^{\text{iso}}}. \] (3.29)

Some specific functions which automatically satisfy Eq. (3.29) are, e.g.,

\[
\begin{align*}
 f_{4rj} &= \xi_j \frac{1}{\beta_{ij} + 1} (g_j)^{\beta_{ij}+1} (l_4)^{\gamma_{ij}+1} \quad \text{with} \quad f_{4rj} = \xi_j \frac{1}{(g_j)^{\beta_{ij}+1}} (l_4)^{\gamma_{ij}}, \\
 f_{5rj} &= \xi_j \frac{1}{\beta_{ij} + 1} (g_j)^{\beta_{ij}+1} (l_5)^{\gamma_{ij}+1} \quad \text{with} \quad f_{5rj} = \xi_j \frac{1}{(g_j)^{\beta_{ij}+1}} (l_5)^{\gamma_{ij}}, \\
 f_{3rj} &= \xi_j \frac{g_j}{i_{ij}} (l_3)^{-\gamma_{ij}} \quad \text{with} \quad f_{3rj} = - \xi_j g_j (l_3)^{-\gamma_{ij}}, \quad (3.30)
\end{align*}
\]

with the parameter conditions

\[\xi_j > 0, \quad \alpha_{ij} > 0, \quad \beta_{ij} > 0, \quad \gamma_{ij} > -1/2. \] (3.31)

Considering Eq. (3.30) the final anisotropic energy in terms of l_3, J_{ij} and F_{ij} reads

\[\psi^{\text{aniso}}_2 = \sum_{r=1}^n \sum_{j=1}^m \xi_j \left[\frac{1}{\alpha_{ij} + 1} (g_j)^{\alpha_{ij}+1} (l_4)^{\gamma_{ij}+1} + \frac{1}{\beta_{ij} + 1} (g_j)^{\beta_{ij}+1} (l_5)^{\gamma_{ij}+1} + \frac{g_j}{i_{ij}} (l_3)^{-\gamma_{ij}} \right], \] (3.32)

and the associated anisotropic stresses are consequently given by the expression

\[
S^{\text{aniso}}_2 = \sum_{r=1}^n \sum_{j=1}^m \left[-g_j f_{3rj}^{\gamma_{ij}} + \frac{1}{(g_j)^{\beta_{ij}+1}} f_{5rj}^{\beta_{ij}+1} \right] C^{-1} + \frac{1}{(g_j)^{\beta_{ij}+1}} f_{4rj}^{\beta_{ij}+1} G_j - \frac{1}{(g_j)^{\beta_{ij}+1}} f_{5rj}^{\beta_{ij}+1} I_3 C^{-1} G_j C^{-1} \right]. \] (3.33)

For the derivation of the material tangent tensor we introduce the abbreviation

\[\psi = \psi^{\text{iso}} + \psi^{\text{aniso}} \quad \text{with} \quad \psi^{\text{aniso}} = \sum_{r=1}^n \sum_{j=1}^m \psi^{\text{aniso}} \] (3.34)

and therefore we write in general the tangent moduli as sum of an isotropic and anisotropic part as follows:

\[C = 4 \frac{\partial^2 \psi}{\partial \epsilon \partial \epsilon} = 4 \frac{\partial^2 \psi^{\text{iso}}}{\partial \epsilon \partial \epsilon} + 4 \sum_{r=1}^n \sum_{j=1}^m \frac{\partial^2 \psi^{\text{aniso}}}{\partial \epsilon \partial \epsilon} = C^{\text{iso}} + m \sum_{r=1}^n \sum_{j=1}^m C^{\text{aniso}}. \] (3.35)
In detail the isotropic part of the tangent moduli is obtained from

\[
C^{\text{iso}} = 4 \left[\frac{\partial^2 \psi^{\text{iso}}}{\partial l_1^2} \mathbf{1} \otimes \mathbf{1} + \frac{\partial^2 \psi^{\text{iso}}}{\partial l_2^2} \left[\mathbf{1} \otimes \mathbf{1} - \mathbf{1} \otimes \mathbf{1} \right] + \frac{\partial^2 \psi^{\text{iso}}}{\partial l_1 \partial l_2} \left[l_1 \mathbf{1} \otimes \mathbf{1} + l_1 \mathbf{1} \otimes \mathbf{1} - \mathbf{1} \otimes \mathbf{1} - \mathbf{1} \otimes \mathbf{1} \right] \right] \\
+ \frac{\partial^2 \psi^{\text{iso}}}{\partial l_3 \partial l_3} \text{Cof } C \otimes \text{Cof } C \right].
\] (3.36)

and the anisotropic part of the material tangent tensor appears in the form

\[
C^{\text{aniso}} = 4 \left[\frac{\partial^2 \psi^{\text{aniso}}}{\partial l_3^2} J_3 \left[C^{-1} \otimes C^{-1} - C^{-1} \otimes C^{-1} \right] + \frac{\partial^2 \psi^{\text{aniso}}}{\partial l_3 \partial l_3} \text{Cof } C \otimes \text{Cof } C \right] \]

\[
+ \frac{\partial^2 \psi^{\text{aniso}}}{\partial l_3 \partial l_3} \frac{\partial J_3}{\partial l_3} \right].
\] (3.37)

where we take into account that \(\frac{\partial^2 \psi}{\partial l_3^2} C \partial l_1 = \frac{\partial^2 \psi}{\partial l_3^2} \partial l_1 \).

Note that the anisotropic free energy function (3.32) can be used stand-alone, i.e., the free energy function given in Eq. (3.34) can be considered without the isotropic term \(\psi^{\text{iso}} \) (3.12). The reason for this lies in the fact, that Eq. (3.32) is already sufficient for satisfying the coercitivity condition. The proof is given in detail in Appendix A. Furthermore, the term \(f_{3ij} \) in Eq. (3.30) can be replaced by

\[
f_{3ij} = -\xi_{ij} \ln \left(\frac{\rho_i}{\rho_j} \right) \quad \text{with} \quad f'_{3ij} = -\frac{\xi_{ij}}{\rho_i} \frac{\rho_j}{\rho_i}. \] (3.38)

Model problem III: Further polyconvex functions, automatically satisfying the condition of a stress-free reference configuration, are

\[
\psi^{\text{aniso}}_3 = \sum_{r=1}^{m} \sum_{j=1}^{m} \left[f_{3ij}(l_3) + f_{6ij}(l_3, J_4) + f_{7ij}(l_3, J_5) \right].
\] (3.39)

The second Piola–Kirchhoff stresses \(S^{\text{aniso}} = 2c \psi^{\text{aniso}}_3 \) are then given by

\[
S^{\text{aniso}}_3 = 2 \sum_{r=1}^{m} \sum_{j=1}^{m} \left[\frac{\partial f_{3ij}}{\partial l_3} l_3 + \frac{\partial f_{6ij}}{\partial l_3} l_3 + \frac{\partial f_{7ij}}{\partial l_3} l_3 \right] \frac{\partial J_3}{\partial l_3} \right].
\] (3.40)

Again enforcing \(S^{\text{iso}}_{\text{c}} = 0 \) and \(S^{\text{aniso}}_{\text{c}} = 0 \) with the more restrictive assumptions \(S^{\text{iso}}_{\text{c}} = 0 \) and \(S^{\text{aniso}}_{\text{c}} = 0 \) yields for the anisotropic part

\[
2 \sum_{r=1}^{m} \sum_{j=1}^{m} \left[\frac{\partial f_{3ij}}{\partial l_3} l_3 + \frac{\partial f_{6ij}}{\partial l_3} l_3 + \frac{\partial f_{7ij}}{\partial l_3} l_3 \right] \left(\frac{\partial f_{6ij}}{\partial l_4} l_4 + \frac{\partial f_{7ij}}{\partial l_4} l_4 \right) = 0.
\] (3.41)

For the coefficients of the independent tensor generators \(\mathbf{1} \) and \(\mathbf{G}_j \) for \(j = 1, \ldots, m \) the following identities have to be satisfied:

\[
\frac{\partial f_{3ij}}{\partial l_3} + \frac{\partial f_{6ij}}{\partial l_3} + \frac{\partial f_{7ij}}{\partial l_3} = - \frac{\partial f_{7ij}}{\partial l_5} g_j \quad \text{and} \quad \frac{\partial f_{6ij}}{\partial l_4} + \frac{\partial f_{7ij}}{\partial l_5} g_j = \frac{\partial f_{7ij}}{\partial l_5} g_j \quad \forall r, j.
\] (3.42)

Some specific functions and their derivatives which automatically satisfy Eq. (3.42) are

\[
f_{6ij} = \frac{f_{7ij}}{l_3}, \quad \frac{\partial f_{6ij}}{\partial l_3} = \frac{1}{3} l_3^{-4/3} f_{7ij}, \quad \frac{\partial f_{6ij}}{\partial l_4} = \frac{1}{3} l_3^{-4/3} f_{7ij}, \quad \frac{\partial f_{6ij}}{\partial l_5} = \frac{1}{3} l_3^{-4/3} f_{7ij}.
\] (3.43)

with \(x_{ij} \geq 1 \). For the function \(f_{3ij}(l_3) \) we could use

\[
f_{3ij} = \frac{g_{ij}}{l_3}, \quad \frac{\partial f_{3ij}}{\partial l_3} = -g_{ij} l_3^{-1/2} \quad \text{with} \quad \beta_{ij} \geq -1/2.
\] (3.44)

Inserting Eqs. (3.43) and (3.44) into Eq. (3.42) leads directly to the material parameter \(x_{ij} \), i.e.,

\[
\beta_{ij} = \frac{5}{2}.
\] (3.45)
The symmetry of crystals as well as their anisotropic physical properties are closely related to the so-called crystal lattices. A lattice can be carried into itself by suitable translations of the basic periods of the crystal lattice. These periodic functions in Table 1. For the orthotropic case we also refer in this context to Itskov and Aksel (2004).

According to the aforementioned analysis of different anisotropic polyconvex energies we summarize four suitable explicit functions in Table 1 for the orthotropic case. For the orthotropic case we also refer in this context to Itskov and Aksel (2004).

3.2. Metric tensors for the seven crystal systems

The symmetry of crystals as well as their anisotropic physical properties are closely related to the so-called crystal lattices. A lattice can be carried into itself by suitable translations of the basic periods of the crystal lattice. These periodic cells are the (not uniquely determined) 14 types of Bravais lattices, which are associated with seven crystal systems. A Bravais lattice is determined by three base vectors \(a_1, a_2, a_3\), with \(a = \|a_1\|, b = \|a_2\|, c = \|a_3\|\) and the axial angles \(\alpha, \beta, \gamma\), see Fig. 3.

For the case of anisotropic elasticity there exist 12 types of symmetry groups. Eleven of them characterize the 32 crystal classes and the remaining one describes the transversely isotropic case, see Suhubi (1975), Smith and Rivlin (1957, 1958), Smith et al. (1963), Spencer (1971) and Liu (1982) and the references therein. The material symmetries of a considered crystal impose restrictions on the physical coefficients. Relations between symmetries of a crystal and its physical properties are postulated by the fundamental Neumann (1885) principle:

Symmetry elements associated with any physical property of a crystal must include those of the symmetry point group of the crystal.

Note that the physical properties may have a greater symmetry than the associated point group of the crystal. However, the symmetry of the physical properties cannot be lower than that of the crystal. Crystals can be classified into seven systems, see Table 2.

Table 1

Four different polyconvex anisotropic energy functions satisfying the stress-free reference configuration condition

\[
\psi_{\text{aniso}}^j = \sum_{r=1}^{m} \sum_{j=1}^{n} \xi_j \left[\frac{1}{\beta_j} \left(\frac{J_{ij}}{\beta_j} \right)^{\gamma_j} + \frac{1}{\beta_j} \left(\frac{J_{ij}}{\beta_j} \right)^{\gamma_j} - \ln(J_{ij}) \right]
\]

with \(\xi_j > 0, \beta_j > 0, \gamma_j > -1/2\)

\[
\psi_{\text{aniso}}^k = \sum_{r=1}^{m} \sum_{j=1}^{n} \xi_j \left[\frac{1}{\beta_j} \left(\frac{J_{ij}}{\beta_j} \right)^{\gamma_j} + \frac{1}{\beta_j} \left(\frac{J_{ij}}{\beta_j} \right)^{\gamma_j} - \ln(J_{ij}) \right]
\]

with \(\xi_j > 0, \beta_j > 0, \gamma_j > -1/2, \xi_j > 0\)

\[
\psi_{\text{aniso}}^l = \sum_{r=1}^{m} \sum_{j=1}^{n} \xi_j \left[\frac{1}{\beta_j} \left(\frac{J_{ij}}{\beta_j} \right)^{\gamma_j} + \frac{1}{\beta_j} \left(\frac{J_{ij}}{\beta_j} \right)^{\gamma_j} - \ln(J_{ij}) \right]
\]

with \(\xi_j > 1, \beta_j = \alpha_j - 2/3, \xi_j > 0\)

Alternatively we can consider the function

\[
f_{3\eta} = -b^{3\eta} \beta_j \ln(t_3), \quad \frac{\partial f_{3\eta}}{\partial t_3} = -\beta_j \frac{b^{3\eta}}{t_3} \quad \text{with} \quad \alpha_j > 1.
\]

Using Eqs. (3.43) and (3.46) in (3.42), we obtain the restriction

\[
\beta_j = \alpha_j - 2/3.
\]

In order to compute the complete tangent moduli we must add

\[
4 \sum_{r=1}^{m} \sum_{j=1}^{n} \left[\frac{\partial^2 \psi_{\text{aniso}}}{C_{ij}C_{3j}} \left[\text{Cof} C \otimes G_j + G_j \otimes \text{Cof} C \right] + \frac{\partial^2 \psi_{\text{aniso}}}{C_3 C_j} \left[\text{Cof} C \otimes [J_{ij} C^{-1} - I_3 C^{-1} G_j C^{-1}] \right] \right.
\]

\[\left. + [J_{ij} C^{-1} - I_3 C^{-1} G_j C^{-1}] \otimes \text{Cof} C \right]
\]

(3.48)

to the expression given in Eq. (3.35).

Based on the aforementioned analysis of different anisotropic polyconvex energies we summarize four suitable explicit functions in Table 1. For the orthotropic case we also refer in this context to Itskov and Aksel (2004).

3.2. Metric tensors for the seven crystal systems

The symmetry of crystals as well as their anisotropic physical properties are closely related to the so-called crystal lattices. A lattice can be carried into itself by suitable translations of the basic periods of the crystal lattice. These periodic cells are the (not uniquely determined) 14 types of Bravais lattices, which are associated with seven crystal systems. A Bravais lattice is determined by three base vectors \(a_1, a_2, a_3\), with \(a = \|a_1\|, b = \|a_2\|, c = \|a_3\|\) and the axial angles \(\alpha, \beta, \gamma\), see Fig. 3.

For the case of anisotropic elasticity there exist 12 types of symmetry groups. Eleven of them characterize the 32 crystal classes and the remaining one describes the transversely isotropic case, see Suhubi (1975), Smith and Rivlin (1957, 1958), Smith et al. (1963), Spencer (1971) and Liu (1982) and the references therein. The material symmetries of a considered crystal impose restrictions on the physical coefficients. Relations between symmetries of a crystal and its physical properties are postulated by the fundamental Neumann (1885) principle:

Symmetry elements associated with any physical property of a crystal must include those of the symmetry point group of the crystal.

Note that the physical properties may have a greater symmetry than the associated point group of the crystal. However, the symmetry of the physical properties cannot be lower than that of the crystal. Crystals can be classified into seven systems, see Table 2.
In the following we are interested in the construction of a second-order tensor G, which reflects the basic symmetry relations of the considered crystal class. In analogy to Menzel and Steinmann (2001) we introduce a fictitious reference configuration \bar{B}_0. Let H represent a linear tangent map, which maps cartesian base vectors $\bar{e}_i \in \mathcal{B}_0$ onto crystallographic motivated base vectors $a_i \in \mathcal{B}_0$, i.e., $H : \bar{e}_i \to a_i$. In this context $G = HH^T$ can be considered as a push-forward of the cartesian metric of the fictitious configuration \bar{B}_0. It should be noted that the introduced second-order tensors can be interpreted as the so-called structural tensors introduced by Boehler (1978, 1979, 1987) and Liu (1982) in some sense. The main difference here is the required positive definiteness of G, necessary for the polyconvexity condition (slight modifications in the aforementioned analysis also allow positive semidefinite tensors G). For the extension of the G-invariant functions into functions which are invariant under the orthogonal group, the required additional structural tensors are of order up to six, see Zhang and Rychlewski (1990), Zheng and Spencer (1993) and Zheng (1994). Therefore it is clear that our ansatz cannot reflect the whole collections of invariants required for a complete description of the underlying anisotropies of some crystal classes. Nevertheless the restricted approach satisfies the fundamental existence theories in finite elasticity.

For the construction of the inherent anisotropic metric G we consider a transformation matrix H, which can be interpreted as an initial mapping of the cartesian base system $\bar{e}_i = (1,0,0)^T$, $\bar{e}_2 = (0,1,0)^T$, $\bar{e}_3 = (0,0,1)^T$. The transformation of the cartesian base vectors to the crystallographic base system related to the associated Bravais lattice are expressed by

$$H = [a_1, a_2, a_3] \quad \text{with} \quad a_i = H \bar{e}_i. \quad (3.49)$$

The coefficient scheme of the transformation H has in general nine non-vanishing entries; six of them are necessary for the classification of the crystal system and the remaining three are used to describe the relative orientation of the crystallographic base systems with respect to the underlying cartesian one. In the following analysis it is sufficient to concentrate on the different crystal systems only. Therefore we make special choices for the orientations of the base vectors: for example we set $a_1 \parallel \bar{e}_1$ and $a_2 \perp \bar{e}_3$. This leads to the following representation of the tensor H:

$$H = \begin{bmatrix} a_{11} & a_{12} & a_{13} \\ 0 & a_{22} & a_{23} \\ 0 & 0 & a_{33} \end{bmatrix}. \quad (3.50)$$
The geometric interpretation of the components of the upper triangular matrix H—for the abovementioned relative orientation of the base systems—is depicted in Fig. 4. The angles are given by the relations
\[\cos \alpha = \frac{a_3 \cdot a_2}{\|a_2\| \|a_3\|}, \quad \cos \beta = \frac{a_3 \cdot a_1}{\|a_2\| \|a_3\|}, \quad \cos \gamma = \frac{a_1 \cdot a_2}{\|a_1\| \|a_2\|}. \] (3.51)

Substituting the lengths a, b, c of the individual crystallographic base vectors a_1, a_2 and a_3, respectively, and Eqs. (3.51) into (3.50) yields
\[H = \begin{bmatrix} a & b \cos \gamma & c \cos \beta \\ 0 & b \sin \gamma & c(\cos \alpha - \cos \beta \cos \gamma) \sin \gamma \\ 0 & 0 & c[1 + 2 \cos \alpha \cos \beta \cos \gamma - (\cos^2 \alpha + \cos^2 \beta + \cos^2 \gamma)^{1/2}] \sin \gamma \end{bmatrix}. \] (3.52)

For the seven systems we choose the metric representations presented in Table 3.

Now we check the consequences of the approach with respect to the well-known representations of anisotropic energy functions. Therefore we evaluate the terms $C \cdot G$ and Cof $C \cdot G$ and identify the coefficients of the independent components of G. These coefficients reflect the inherent (maybe incomplete) functional bases of the considered crystal class up to the power of two. The integrity bases for a single, symmetric, second-order, three-dimensional tensor for each of the 32 crystal classes have been determined in Smith and Rivlin (1958), see also Smith and Rivlin (1957) and Şuhubi (1975).

Triclinic system: Evaluating $C \cdot G^m$ and Cof $C \cdot G^m$ yields, after ordering with respect to the individual entries $\tilde{a}, \tilde{b}, \tilde{c}, \tilde{d}, \tilde{e}, \tilde{f}$ in G^m, the functional basis
\[C_{11}, C_{22}, C_{33}, C_{12}, C_{13}, C_{23} \] (3.53)
and identical components in terms of the cofactor of C. Eq. (3.53) represents the full functional basis for the triclinic class.

Monoclinic system: Examining the scalar products $C \cdot G^m$ and Cof $C \cdot G^m$ leads to the elements
\[C_{11}, C_{22}, C_{33}, C_{12} \] (3.54)
and
\begin{align*}
\text{Cof } C_{11} &= C_{22}C_{33} - C_{33}^2, \\
\text{Cof } C_{22} &= C_{11}C_{33} - C_{13}^2, \\
\text{Cof } C_{33} &= C_{11}C_{22} - C_{12}^2, \\
\text{Cof } C_{12} &= C_{13}C_{23} - C_{12}C_{33},
\end{align*} (3.55)
respectively. The full functional basis of the monoclinic class is given by the well-known representation
\[C_{11}, C_{22}, C_{33}, C_{12}, C_{13}^2, C_{23}^2, C_{13}C_{23}. \] (3.56)

A comparison of Eqs. (3.54) and (3.55) with Eq. (3.56) shows that all elements of the classical basis (3.56) appear in the polyconvex framework, but in a non-trivial sense.
Table 3

Metric representations \(\mathbf{G} = \mathbf{HH}^t \)

Triclinic system with \(\mathbf{a}_1 || \mathbf{e}_1 \) and \(\mathbf{a}_2 \perp \mathbf{e}_3 \)

\[
\mathbf{H}_t = \begin{bmatrix} a_{11} & a_{12} & a_{13} \\ 0 & a_{22} & a_{23} \\ 0 & 0 & a_{33} \end{bmatrix}, \quad \mathbf{G}_t = \begin{bmatrix} \tilde{a} & \tilde{d} & \tilde{\varepsilon} \\ \tilde{d} & \tilde{b} & \tilde{f} \\ \tilde{\varepsilon} & \tilde{f} & \tilde{c} \end{bmatrix}
\]

with \(\tilde{a} = a^2 + b^2 \cos^2 \gamma + c^2 \cos^2 \beta \)

\[
\tilde{b} = b^2 \sin^2 \gamma + \frac{c^2 (\cos \alpha - \cos \beta \cos \gamma)^2}{\sin^2 \gamma}
\]

\[
\tilde{\varepsilon} = \frac{c^2 (1 + 2 \cos \alpha \cos \beta \cos \gamma - \cos^2 \alpha - \cos^2 \beta - \cos^2 \gamma)}{\sin^2 \gamma}
\]

\[
\tilde{d} = b^2 \cos \gamma \sin \gamma + \frac{c^2 \cos \beta (\cos \alpha - \cos \beta \cos \gamma)}{\sin \gamma}
\]

\[
\tilde{\gamma} = \frac{c^2 \cos \beta (1 + 2 \cos \alpha \cos \beta \cos \gamma - \cos^2 \alpha - \cos^2 \beta - \cos^2 \gamma)^{1/2}}{\sin \gamma}
\]

\[
\tilde{f} = \frac{c^2 (\cos \alpha - \cos \beta \cos \gamma) (1 + 2 \cos \alpha \cos \beta \cos \gamma - \cos^2 \alpha - \cos^2 \beta - \cos^2 \gamma)^{1/2}}{\sin^2 \gamma}
\]

Monoclinic system with \(\mathbf{a}_1 || \mathbf{e}_1 \) and \(\mathbf{a}_3 || \mathbf{e}_3 \)

\[
\mathbf{H}_m = \begin{bmatrix} a & b \cos \gamma & 0 \\ 0 & b \sin \gamma & 0 \\ 0 & 0 & c \end{bmatrix}, \quad \mathbf{G}_m = \begin{bmatrix} a^2 + b^2 \cos^2 \gamma & b^2 \cos \gamma \sin \gamma & 0 \\ b^2 \cos \gamma \sin \gamma & b^2 \sin^2 \gamma & 0 \\ 0 & 0 & c^2 \end{bmatrix}
\]

Trigonal system: rhombohedral system with \((\mathbf{a}_1 + \mathbf{a}_2 + \mathbf{a}_3) || \mathbf{e}_1 \), see Fig. 5

\[
\mathbf{H}_t = \begin{bmatrix} 1/\sqrt{3}a & -1/(2 \sqrt{3}a) & -1/(2 \sqrt{3}a) \\ 0 & 1/2a & -1/2a \\ c/3 & c/3 & c/3 \end{bmatrix}, \quad \mathbf{G}_t = \begin{bmatrix} a^2/2 & 0 & 0 \\ 0 & a^2/2 & 0 \\ 0 & 0 & c^2/3 \end{bmatrix}
\]

Hexagonal system with \(\mathbf{a}_1 || \mathbf{e}_1 \), \(a = b \neq c \) (see the forthcoming remarks)

\[
\mathbf{H}_h = \begin{bmatrix} a & 0 & 0 \\ 0 & a & 0 \\ 0 & 0 & c \end{bmatrix}, \quad \mathbf{G}_h = \begin{bmatrix} a^2 & 0 & 0 \\ 0 & a^2 & 0 \\ 0 & 0 & c^2 \end{bmatrix}
\]

Rhombic system with \(\mathbf{a}_1 || \mathbf{e}_1 \)

\[
\mathbf{H}_r = \begin{bmatrix} a & 0 & 0 \\ 0 & b & 0 \\ 0 & 0 & c \end{bmatrix}, \quad \mathbf{G}_r = \begin{bmatrix} a^2 & 0 & 0 \\ 0 & b^2 & 0 \\ 0 & 0 & c^2 \end{bmatrix}
\]

Tetragonal system with \(\mathbf{a}_1 || \mathbf{e}_1 \)

\[
\mathbf{H}_t = \begin{bmatrix} a & 0 & 0 \\ 0 & a & 0 \\ 0 & 0 & c \end{bmatrix}, \quad \mathbf{G}_t = \begin{bmatrix} a^2 & 0 & 0 \\ 0 & a^2 & 0 \\ 0 & 0 & c^2 \end{bmatrix}
\]

Cubic system with \(\mathbf{a}_1 || \mathbf{e}_1 \)

\[
\mathbf{H}_c = \begin{bmatrix} a & 0 & 0 \\ 0 & a & 0 \\ 0 & 0 & a \end{bmatrix}, \quad \mathbf{G}_c = \begin{bmatrix} a^2 & 0 & 0 \\ 0 & a^2 & 0 \\ 0 & 0 & a^2 \end{bmatrix}
\]
Trigonal system: Let a_h, b_h, c_h be the basis of the hexagonal centered cell, with the threefold axis $c_h||\vec{e}_3$. The basis of the associated rhombohedral cell is denoted by a_1, a_2, a_3 of equal lengths (Fig. 5):

$$a_1 = \frac{1}{3}(2a_h + b_h + c_h), \quad a_2 = \frac{1}{3}(-a_h + b_h + c_h), \quad a_3 = \frac{1}{3}(-a_h - 2b_h + c_h),$$

with the threefold axis along the $(a_1 + a_2 + a_3)$-direction.

These geometrical crystallographic relations lead to the transformation matrix H and the second-order tensor G^h listed in Table 3. After ordering the terms of $C \cdot G^h$ and Cof $C \cdot G^h$ with respect to the individual components of G^h, we obtain the elements of the functional basis

$$C_{11} + C_{22}, C_{33},$$

$$\text{Cof} \ C_{11} + \text{Cof} \ C_{22} = C_{22} C_{33} + C_{11} C_{33} - (C_{23}^2 + C_{13}^2),$$

$$\text{Cof} \ C_{33} = C_{11} C_{22} - C_{12}^2.$$

(3.57)

A comparison of the scalar invariants (3.57) with the functional basis of independent scalar invariants of the trigonal (rhombohedral) system with seven independent elasticities C_{ijkl} of the fourth-order linearized elasticity tensor C

$$C_{11} + C_{22}, C_{33}, C_{13}^2 + C_{23}^2, C_{21}^2 + C_{22}^2 + 2 C_{12}^2,$$

$$C_{13}(C_{11} - C_{22}) - 2 C_{12} C_{23},$$

$$C_{23}(C_{11} - C_{22}) + 2 C_{12} C_{13},$$

(3.58)

given in Dimitrienko (2002), shows that the last two invariants in the set (3.58) cannot be expressed by simple combinations of the terms appearing in the polyconvex framework (3.57). In the trigonal system with six independent elasticities the last invariant in Eq. (3.58) has to be replaced by det C, which is always an element of the proposed functional basis.

Hexagonal system: A primitive hexagonal cell can be described by two base vectors a_h and b_h lying in the $\vec{e}_1-\vec{e}_2$-plane and a third vector perpendicular to this lattice plane (Fig. 6). In order to capture the inherent symmetries of this lattice Bravais (1866) introduced a third (redundant) base vector $c_h = -a_h - b_h$ in the $\vec{e}_1-\vec{e}_2$-plane. All vectors a_h, b_h, c_h are equivalent. Reflections with respect to planes perpendicular to these privileged directions show the inherent sixfold symmetry of the hexagonal system.

Fig. 5. Primitive cell of rhombohedral shape.

Fig. 6. Hexagonal lattice of a primitive hexagonal cell.
symmetry. This is related to rotations through 60° about the \(e_3 \)-axis, which indicates that the \(e_1 - e_2 \)-plane acts as an isotropy plane, see Love (1907). Therefore the fictitious deformation has to be of the type

\[
H^{ht} = \text{diag}(a, a, c) \rightarrow G^{ht} = \text{diag}(a^2, a^2, c^2).
\]

(3.59)

The anisotropic invariants in the proposed approach are identical to Eq. (3.57) and after including \(\det C \) it is equivalent to the full functional basis given in Dimitrienko (2002).

Tetragonal system: For the tetragonal system we also obtain the anisotropic invariants (3.57), which, however, do not reflect the complete functional basis.

Rhombic system: Performing the same analysis as above we get the basis of anisotropic invariants in the polyconvex framework:

\[
C_{11}, C_{22}, C_{33}, \text{Cof } C_{11}, \text{Cof } C_{22}, \text{Cof } C_{33},
\]

which is complete after adding \(\det C \), see Section 3.5.

Cubic system: Up to the power of two we only obtain the anisotropic invariants \(\text{tr } C \) and \(\text{tr}[\text{Cof } C] \) instead of three, which only represent the isotropic invariants of the right Cauchy–Green tensor.

3.3. Anisotropic moduli-fitting to referential data

In order to approximate the phenomenological responses of real anisotropic materials with the abovementioned anisotropic polyconvex functions we have to fit the stress–strain relation to experimental measurements or alternatively we have to fit the fourth-order elasticity tensor near the reference configuration; thus, the linearized moduli at the reference state result from the linearization of the stress response functions at a natural state, i.e.,

\[
\text{Lin}[S] = C_0 : \text{Lin}[E] \quad \text{with } C_0 := 2 \frac{\partial S}{\partial C}_{|C=1} \quad \text{and } S|_{C=1} = 0
\]

(3.61)

and the Green–Lagrange strain tensor

\[
E := \frac{1}{2}(C - I).
\]

(3.62)

The term \(\text{Lin}[S] \) can be identified with the linear stress tensor \(\sigma \) and the term \(\text{Lin}[E] \) with the linear strain tensor \(\epsilon \) in the small strain regime. Thus, Eq. (3.61) reduces to the linear relation \(\sigma = C_0 : \epsilon \). Hence, we identify the material parameters by comparing the calculated tangent moduli with experimental data based moduli given in the classical representation. In detail, the fitting of moduli is done by minimizing the error function

\[
\epsilon = \frac{\| C^{(V)}_{\text{comp}} - C^{(V)}_{\text{exp}} \|}{\| C^{(V)}_{\text{exp}} \|}.
\]

(3.63)

Here \(C^{(V)}_{\text{comp}} \in \mathbb{R}^{6 \times 6} \) denotes the computed tangent moduli \(C_0 \) in Voigt notation. Furthermore, \(C^{(V)}_{\text{exp}} \in \mathbb{R}^{6 \times 6} \) is the associated coefficient scheme of experimental values. The used norm of the matrix schemes are defined by

\[
\| C^{(V)} \| = \sqrt{\sum_{i=1}^{6} \sum_{j=1}^{6} (C^{(V)}_{ij})^2}.
\]

(3.64)

![Fig. 7. Monoclinic material: characteristic surface of Young's modulus, elasticities [GPa].](image-url)
The performed parameter adjustments have been done with the evolution strategy proposed by Schwefel (1995) and Rechenberg (1994). Furthermore, we plot the characteristic surfaces of Young’s modulus for the adjusted elasticities to visualize the anisotropy ratios, see Shuvalov (1988).

3.3.1. Monoclinic system

As an example for the fitting described above, we are interested in the approximation of a monoclinic material. The elasticity moduli for the monoclinic material Aegirite as well as the characteristic surface of Young’s moduli are depicted in Fig. 7, parameters are taken from Simmons and Wang (1971).

The material parameters of the free energy function given in Eq. (3.34) are first fitted. Remember therefore that this free energy function is of the type

$$\psi = \psi^{\text{iso}} + \psi^{\text{aniso}},$$

with the compressible Mooney-Rivlin model (3.12) and the anisotropic part

$$\psi^{\text{aniso}} = \sum_{r=1}^{n} \sum_{j=1}^{m} \xi_{ij} \left[\frac{1}{a_{ij} + 1} (g_{ij})^{\gamma_{ij}+1} + \frac{1}{b_{ij} + 1} (p_{ij})^{\gamma_{ij}+1} + \frac{g_{ij}}{\gamma_{ij}} (l_{ij})^{\gamma_{ij}} \right],$$

where the parameter conditions (3.31) must be fulfilled. Setting the summation index $n = m = 2$ and using the representation of a monoclinic metric tensor

$$G_{ij}^m = \begin{bmatrix} a_i & d_i & 0 \\ d_i & b_i & 0 \\ 0 & 0 & c_j \end{bmatrix}$$ with $a_i, c_j > 0, d_i^2 < a_i b_i,$

yields the material parameters for the isotropic part

$$\alpha_1 = 3.925, \quad \alpha_2 = 0, \quad \delta_1 = 0.072, \quad \delta_2 = 7.994,$$

and the parameters for the anisotropic contributions listed in Table 4. The monoclinic metric tensors appear in the form

$$G_{11}^m = \begin{bmatrix} 1.570 & -0.142 & 0 \\ -0.142 & 0.040 & 1.808 \\ 0 & 0 & 0.000 \end{bmatrix}, \quad G_{22}^m = \begin{bmatrix} 2.599 & 0.455 & 0 \\ 0.455 & 0.749 & 0 \\ 0 & 0 & 2.008 \end{bmatrix}. $$

Table 4

<table>
<thead>
<tr>
<th>r</th>
<th>j</th>
<th>a_{ij}</th>
<th>b_{ij}</th>
<th>γ_{ij}</th>
<th>ξ_{ij}</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>1</td>
<td>0.233</td>
<td>2.211</td>
<td>-0.465</td>
<td>1.407</td>
</tr>
<tr>
<td>1</td>
<td>2</td>
<td>3.067</td>
<td>0.105</td>
<td>-0.474</td>
<td>0.598</td>
</tr>
<tr>
<td>2</td>
<td>2</td>
<td>4.287</td>
<td>0.000</td>
<td>-0.468</td>
<td>5.345</td>
</tr>
<tr>
<td>2</td>
<td>1</td>
<td>0.148</td>
<td>3.026</td>
<td>-0.486</td>
<td>0.000005</td>
</tr>
</tbody>
</table>

Table 5

<table>
<thead>
<tr>
<th>r</th>
<th>j</th>
<th>a_{ij}</th>
<th>b_{ij}</th>
<th>γ_{ij}</th>
<th>ξ_{ij}</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>1</td>
<td>0.700</td>
<td>0.000</td>
<td>-0.0500</td>
<td>1.532</td>
</tr>
<tr>
<td>1</td>
<td>2</td>
<td>3.942</td>
<td>0.000</td>
<td>-0.410</td>
<td>1.728</td>
</tr>
<tr>
<td>1</td>
<td>3</td>
<td>0.000</td>
<td>0.000</td>
<td>0.0000</td>
<td>0.000</td>
</tr>
<tr>
<td>2</td>
<td>1</td>
<td>1.000</td>
<td>0.385</td>
<td>-0.500</td>
<td>0.334</td>
</tr>
<tr>
<td>2</td>
<td>2</td>
<td>3.685</td>
<td>0.000</td>
<td>-0.500</td>
<td>1.726</td>
</tr>
<tr>
<td>3</td>
<td>2</td>
<td>4.391</td>
<td>0.000</td>
<td>-0.500</td>
<td>2.289</td>
</tr>
<tr>
<td>3</td>
<td>3</td>
<td>0.000</td>
<td>4.028</td>
<td>-0.500</td>
<td>1.200</td>
</tr>
</tbody>
</table>
Consequently the fitted monoclinic anisotropic tangent modulus reads

\[
C^{(V\text{comp})} = \begin{bmatrix}
233.71 & 70.97 & 62.97 & 22.08 & 0 & 0 \\
185.82 & 68.18 & 9.38 & 0 & 0 \\
181.32 & 8.61 & 53.81 & 0 & 0 \\
\text{sym.} & 44.73 & 4.30 \\
& & & 70.66 \\
\end{bmatrix},
\]

(3.70)

which gives a relative error of \(e = 1.65\% \), see Eq. (3.63).

Let us now fit the elasticities (see Fig. 7) using the free energy function \(\psi = \psi_{\text{aniso}}^4 \), i.e., we here neglect the isotropic Mooney-Rivlin part. In the following analysis we increase the number of generating terms by setting \(n = m = 3 \); furthermore, we set \(G_1 = \text{diag}(1, 1, 1) \). After the optimization the remaining anisotropic metric tensors appear in the form

\[
G_2^m = \begin{bmatrix}
2.530 & 0.433 & 0 \\
0.433 & 0.676 & 0 \\
0 & 0 & 1.976 \\
\end{bmatrix}, \quad G_3^m = \begin{bmatrix}
2.218 & -0.228 & 0 \\
-0.228 & 0.218 & 0 \\
0 & 0 & 2.596 \\
\end{bmatrix}.
\]

(3.71)

The complete set of non-vanishing material parameters are given in Table 5.

Using this material parameter set II and the metric tensors (3.71) the relative error is 1.62%.

3.4. Transverse isotropy

Transverse isotropy is characterized by one preferred direction which is chosen to be the \(X_3 \)-direction of the underlying cartesian base system. Therefore the free energy (3.1) has to be invariant with respect to all transformations \(Q \) of the material symmetry group \(\mathcal{G}^3 \), given by

\[
Q(x, e_3) = \cos(x) I + \sin(x) 3 \ e_3 + (1 - \cos(x)) e_3 \otimes e_3,
\]

(3.72)

where \(\hat{3} \) denotes the third-order permutation tensor. The general form of the anisotropic metric, satisfying Eq. (3.3) for all \(Q \in \mathcal{G}^3 \), is

\[
G^\mathcal{A} = \text{diag}(a, a, b) \quad \text{with Cof } G^\mathcal{A} = \text{diag}(ab, ab, a^2).
\]

(3.73)

In this situation it is useful to compute a functional basis explicitly, based on the evaluation of the characteristic polynomial

\[
\det[C - G^\mathcal{A}] = \det C - \text{tr}[\text{Adj}(C) G^\mathcal{A}] + \text{tr}[C \text{Adj}(G^\mathcal{A})] - \det G^\mathcal{A}
\]

\[
= \det C - C \cdot G^\mathcal{A} + C \cdot \text{Cof } G^\mathcal{A} - \det G^\mathcal{A},
\]

(3.74)

see e.g., de Boer and Schröder (2008). The parameters \(a \) and \(b \) have to be interpreted as additional (positive) material parameters. The evaluation of Eq. (3.74) yields, after ordering with respect to the constant coefficients \(a, b, ab, a^2, 1 \):

\[
\text{Cof } C_{11} + \text{Cof } C_{22}, \quad \text{Cof } C_{33}, \quad C_{11} + C_{22}, \quad C_{33}, \quad \det C.
\]

(3.75)

All these individual terms of the functional basis are polyconvex, the proofs are given in Schröder and Neff (2001, 2003). The generalization coming along with the new concept induces the introduction of the alternative invariant basis

\[
I_1 = \text{tr} C, \quad I_2 = \text{tr}[\text{Cof } C], \quad I_3 = \det C, \quad J_4 = \text{tr}[CG^\mathcal{A}], \quad J_5 = \text{tr}[\text{Cof } C G^\mathcal{A}].
\]

(3.76)

The proof of polyconvexity of \(J_4 \) and \(J_5 \) is given in Eq. (3.6). The transversely isotropic free energy function is assumed to be of the type

\[
\psi^\mathcal{A} = \psi^\text{iso}(I_1, I_2, I_3, J_4, J_5).
\]

(3.77)

The second Piola–Kirchhoff stresses are computed via

\[
S = 2 \frac{\partial \psi^\mathcal{A}}{\partial C} = 2 \left[\left(\frac{\partial \psi^\mathcal{A}}{\partial I_1} + \frac{\partial \psi^\mathcal{A}}{\partial I_2} I_1 \right) \frac{\partial I_3}{\partial C} + \left(\frac{\partial \psi^\mathcal{A}}{\partial I_3} I_3 + \frac{\partial \psi^\mathcal{A}}{\partial J_4} I_4 \right) \frac{\partial J_5}{\partial C} \right] C^{-1} + \frac{\partial \psi^\text{iso}}{\partial J_4} G^{\mathcal{A}} - \frac{\partial \psi^\text{iso}}{\partial J_5} C^{-1} G^{\mathcal{A}^{-1}}.
\]

(3.78)

Model problem I: As a first model problem we consider an additive decomposition of the free energy function as follows:

\[
\psi^{\mathcal{A}} = \psi^{\text{iso}}(I_1, I_2, I_3) + \psi^{\text{aniso}}(J_4, J_5),
\]

(3.79)

where we choose for the isotropic part \(\psi^{\text{iso}} \) the compressible Mooney-Rivlin model (3.12). For the anisotropic part \(\psi^{\mathcal{A}} \) we consider a free energy function in terms of the anisotropic invariants \(J_4 \) and \(J_5 \), with

\[
\psi^{\mathcal{A}} = \frac{1}{\alpha_4(\text{tr} G^{\mathcal{A}})^2} \eta_4 \left(J_4^{2n_4} + J_5^{2n_5} \right) \quad \forall \eta_4 \geq 0, \quad \alpha_4 \geq 1.
\]

(3.80)
The unit cube is discretized with one eight-noded standard displacement element. The deformed configuration and the

with the first derivatives of Eq. (3.80) with respect to the anisotropic invariants

Let us first enforce the condition of a stress-free reference configuration, \(S|_{c=1} = 0 \). At the natural state the values of the

and the stress tensor appears in the form

In this case the second condition, \(x^* = 0 \), is automatically fulfilled. Thus, only the first condition, \(x^*_i = 0 \), must be enforced

which leads to the following calculation of the dependent material parameter \(\delta_2 \in \mathbb{R}^+ \)

Model problem II: The second model is given by the following isotropic and anisotropic decomposition:

The isotropic part \(\psi_{ii}^{iso} \) given in Eq. (3.12) is used. As a second possible anisotropic part of the material model problem we consider

with the first derivatives with respect to \(J_4 \) and \(J_5 \)

In order to satisfy the condition of a stress-free reference configuration we have to meet both requirements, \(x^*_i = 0 \) and \(x^*_2 = 0 \), given in Eq. (3.84). Here we obtain the following dependencies between the isotropic and anisotropic material parameters

Homogeneous biaxial tension test: Let us consider a deformation driven homogeneous biaxial compression/tension test. The unit cube is discretized with one eight-noded standard displacement element. The deformed configuration and the
boundary conditions are depicted in Fig. 8. The specimen is equally stretched in \(x_1 \)- and \(x_2 \)-direction, where the biaxial stretches are driven in the range of \(\lambda = 0.2 \) up to \(\lambda = 2.3 \); the stretches are defined by \(\lambda = (l_1 + u_1)/l_1 = (l_2 + u_2)/l_2 \).

Table 6
Table of material parameters (MP) and Young's moduli (YM)

<table>
<thead>
<tr>
<th>MP vs. Case</th>
<th>(\psi_i^{II})</th>
<th>(\psi_i^{II})</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>1</td>
<td>2</td>
</tr>
<tr>
<td>(\gamma_1)</td>
<td>2.0</td>
<td>20.0</td>
</tr>
<tr>
<td>(\alpha_1)</td>
<td>8.0</td>
<td>8.0</td>
</tr>
<tr>
<td>(\alpha_2)</td>
<td>0.0</td>
<td>0.0</td>
</tr>
<tr>
<td>(\delta_1)</td>
<td>10.0</td>
<td>10.0</td>
</tr>
<tr>
<td>(\delta_2)</td>
<td>56.0</td>
<td>56.0</td>
</tr>
<tr>
<td>(\eta_1)</td>
<td>10.0</td>
<td>10.0</td>
</tr>
<tr>
<td>(\eta_2)</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>(\beta_1)</td>
<td>2.0</td>
<td>2.0</td>
</tr>
<tr>
<td>(\beta_2)</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>YM</td>
<td></td>
<td></td>
</tr>
<tr>
<td>(E_1)</td>
<td>115.49</td>
<td>140.20</td>
</tr>
<tr>
<td>(E_2 = E_3)</td>
<td>67.05</td>
<td>56.78</td>
</tr>
<tr>
<td>(E_1/E_3)</td>
<td>1.72</td>
<td>2.47</td>
</tr>
</tbody>
</table>

\((\cdot) \) = dependent.

Fig. 9. First Piola–Kirchhoff stresses in \(x_1 \)-direction and \(x_2 \)-direction versus stretch \(\lambda \): (a) \(\psi_1^{II} \), (b) \(\psi_2^{II} \), (c) \(\psi_1^{II} \), (d) \(\psi_2^{II} \).
The preferred direction of the material is oriented parallel to the x_1-direction. We choose an unimodular metric tensor G^{ii} of the type

$$G^{ii} = \text{diag} \left(\gamma_{11}, \frac{1}{\gamma_{11}} \right).$$

(3.90)

For the simulation we use the material parameters listed in Table 6. The documented Young's moduli are calculated from the coefficients of the inverse fourth-order elasticity tensor at the reference configuration: $E_1 = 1/C_{1111}^{0}$ and $E_2 = 1/C_{2222}^{0}$.

The first Piola–Kirchhoff stresses in x_1-direction and x_2-direction with respect to the stretch λ can be seen in Fig. 9.

3.5. Orthotropy

In the orthotropic case we introduce the second-order tensor G^o in such a way that it is invariant with respect to the transformations of the elements Q of the material symmetry group \mathcal{G}^o:

$$\mathcal{G}^o = (R_1, R_2, R_3).$$

(3.91)

Here R_1, R_2, R_3 are reflections with respect to the $X_2- X_3$-, $X_1- X_3$- and $X_1- X_2$-plane defined by the matrices

$$R_1 = \text{diag}(-1, 1, 1), \quad R_2 = (1, -1, 1), \quad R_3 = \text{diag}(1, 1, -1),$$

(3.92)

respectively. For the chosen reference frame the general representation is

$$G^o = \text{diag}(a, b, c) \Rightarrow \text{Cof} \ G^o = \text{diag}(bc, ac, ab).$$

(3.93)

The evaluation of Eq. (3.74) yields, after substituting $(G^o, \text{Cof} \ G^o)$ for $(G^{ii}, \text{Cof} \ G^{ii})$ and ordering with respect to the constant coefficients $a, b, c, bc, ac, ab, 1$:

$$\text{Cof} \ C_{11}, \ \text{Cof} \ C_{22}, \ \text{Cof} \ C_{33}, \ C_{11}, \ C_{22}, \ C_{33}, \ \text{det} \ C.$$ (3.94)

Let us remind that the seven terms in Eq. (3.94) build the orthotropic functional basis. Furthermore, all these individual terms are polyconvex, the proofs are given in Schröder and Neff (2001, 2003).

Model problem: In the final example we consider an orthotropic free energy function. The potential is governed by the compressible Mooney-Rivlin material (3.12) and the anisotropic metric based terms (3.66). Here we set $n = 3, m = 3$ in

\[
\begin{bmatrix}
13.8 & 2.1 & 4.1 & 0 & 0 & 0 \\
12.6 & 4.6 & 0 & 0 & 0 \\
11.2 & 0 & 0 & 0 \\
1.9 & 0 & 0 \\
\text{sym.} & 2.7 & 0 \\
2.9 & \\
\end{bmatrix}
\]

Fig. 10. Characteristic surface of Young's moduli and elasticities of Acenaphthene [GPa].

<table>
<thead>
<tr>
<th>r</th>
<th>j</th>
<th>α_j</th>
<th>β_j</th>
<th>γ_j</th>
<th>ξ_j</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>1</td>
<td>1.037</td>
<td>0.069</td>
<td>-0.134</td>
<td>0.246</td>
</tr>
<tr>
<td>1</td>
<td>2</td>
<td>1.918</td>
<td>0.944</td>
<td>-0.260</td>
<td>0.283</td>
</tr>
<tr>
<td>1</td>
<td>3</td>
<td>2.242</td>
<td>1.419</td>
<td>-0.479</td>
<td>0.292</td>
</tr>
<tr>
<td>2</td>
<td>1</td>
<td>0.379</td>
<td>0.091</td>
<td>-0.286</td>
<td>0.513</td>
</tr>
<tr>
<td>2</td>
<td>2</td>
<td>2.173</td>
<td>1.993</td>
<td>-0.383</td>
<td>0.206</td>
</tr>
<tr>
<td>2</td>
<td>3</td>
<td>1.815</td>
<td>1.143</td>
<td>0.179</td>
<td>0.034</td>
</tr>
<tr>
<td>3</td>
<td>1</td>
<td>1.287</td>
<td>0.583</td>
<td>0.010</td>
<td>0.234</td>
</tr>
<tr>
<td>3</td>
<td>2</td>
<td>1.880</td>
<td>1.094</td>
<td>-0.489</td>
<td>0.445</td>
</tr>
<tr>
<td>3</td>
<td>3</td>
<td>2.610</td>
<td>1.461</td>
<td>-0.472</td>
<td>0.487</td>
</tr>
</tbody>
</table>

Table 7
Material parameter set for Acenaphthene
Eq. (3.66) and take account of the orthotropic metric tensors

\[
G_0 = \begin{bmatrix} a_j & 0 & 0 \\ 0 & b_j & 0 \\ 0 & 0 & c_j \end{bmatrix}
\]

with \(a_j, b_j, c_j > 0\). (3.95)

Let us now approximate the orthotropic material Acenaphthene with the proposed model. The elasticity moduli for the orthotropic material Acenaphthene as well as the characteristic surface of Young’s moduli are given in Fig. 10, parameters are taken again from Simmons and Wang (1971).

The non-vanishing isotropic material parameters are

\[\delta_1 = 0.0077, \quad \delta_2 = 0.0154, \]

and the set of anisotropic material parameters is listed in Table 7. We get three orthotropic metric tensors in the form

\[
G_1 = \text{diag}(0.016, 0.0000002, 0.394), \\
G_2 = \text{diag}(0.640, 0.0000001, 0.128), \\
G_3 = \text{diag}(0.0000002, 0.716, 0.273),
\]

and the fitted orthotropic tangent moduli is finally given by

\[
C^{(V)}_{\text{comp}} = \begin{bmatrix} 13.75 & 2.16 & 4.07 \\ 12.60 & 4.58 & 0 \\ 11.23 & 0 & 2.39 \\ \text{sym.} & 2.63 & 0 \\ & & 2.69 \end{bmatrix}.
\]

(3.97)

Under consideration of Eqs. (3.96) and (3.97) we obtain a relative error \(e\) of 2.28%.

4. Conclusion

In this paper we have proposed a new method for the construction of anisotropic polyconvex hyperelastic models. The main goal was the introduction of a second-order, symmetric, positive definite structural tensor—motivated by some basic crystallographic geometric relations—incorporating the symmetry properties of the underlying crystal class. The great advantage of the proposed framework is that the deduced generic invariant functions automatically fulfill the polyconvexity condition and satisfy the requirement of a stress-free reference configuration. Proofs of the polyconvexity condition as well as of the coercivity condition have been given in detail. Restrictions coming along with the usage of second-order structural tensors concerning the functional bases of some crystal classes have been pointed out.

Acknowledgment

Financial support from DFG (research Grant NE 902/2-1 SCH 570/6-1) is gratefully acknowledged.

Appendix A. Proof of coercivity

Let us recall for symmetric, positive definite \(G_j\)

\[
g_j = \text{tr} G_j = \text{tr}[H_j H_j^T] = \|H_j\|^2 > 0.
\]

\[
J_j = \text{tr}[C G_j] = (F^T F, H_j H_j^T) = (F H_j, F H_j) = \|F H_j\|^2 \geq \lambda_{\min}(H_j H_j^T)
\]

\[
\|F\|^2 \geq \lambda_{\min}(H_j H_j^T) \|F\|^2 = \lambda_{\min}(G_j) \|F\|^2,
\]

\[
J_j = \text{tr}[\text{Cof}(F) G_j] = (F^T \text{Cof} F, H_j H_j^T) = (\text{Cof}(F) H_j, F H_j) = \|\text{Cof}(F) H_j\|^2
\]

\[
\|H_j\|^2 \geq \lambda_{\min}(H_j H_j^T) \|\text{Cof}(F) H_j\|^2 = \lambda_{\min}(G_j) \|\text{Cof}(F) H_j\|^2,
\]

\[
I_3 = \det C = (\det F)^2 \leq \frac{1}{3^{3/2}} \|\text{Cof} F\|^3.
\]

(A.1)

for the last inequality see Hartmann and Neff (2003). Since \(G_j\) is always strictly positive definite we know that the smallest eigenvalue \(\lambda_{\min}(G_j) > 0\) is strictly positive.

With these preliminaries let us proceed to show that the anisotropic energy \(\psi_2^{\text{aniso}}\) satisfies a local coercivity condition, which is needed, together with polyconvexity of \(\psi_2^{\text{aniso}}\) to ensure the existence of global energy minimizers. Coercivity is
a condition that ensures that the energy grows fast enough for large deformation gradients F. More precisely by local coercivity we mean an estimate of the type, see Ball (2002),

$$\forall F \in \mathbb{M}^{3 \times 3} : \psi_{2}^{\text{aniso}}(F) \geq C_{1}(\|F\|^p + \|\text{Cof } F\|q) - C_{2}, \quad p \geq 2, \quad q \geq \frac{3}{2},$$

(A.2)

with constants $C_{1}, C_{2} \geq 0$ and $C_{1} > 0$.

The function ψ_{2}^{aniso} has the generic form (taking only the relevant structure into account, i.e., setting $\alpha_{ij} = \alpha$, $\beta_{ij} = \beta$, $\gamma_{ij} = \gamma$, $g_{ij} = g$, $J_{4i} = J_{4}$, $J_{5j} = J_{5}$)

$$\psi_{2}^{\text{aniso}}(F) = \frac{1}{1 + \alpha g} J_{4}^{1 + \frac{\alpha}{\alpha}} + \frac{1}{1 + \beta g} J_{5}^{1 + \frac{\beta}{\beta}} + \frac{g}{\gamma} J_{3}^{-\frac{\gamma}{\gamma}}.$$

(A.3)

Thus it follows easily, taking the relations (A.1) into account, that for $\alpha, \beta \geq 0$

$$\psi_{2}^{\text{aniso}}(F) \geq \frac{1}{1 + \alpha g} J_{4}^{1 + \frac{\alpha}{\alpha}} + \frac{1}{1 + \beta g} J_{5}^{1 + \frac{\beta}{\beta}} + \frac{g}{\gamma} J_{3}^{-\frac{\gamma}{\gamma}}$$

$$\geq \frac{1}{1 + \alpha g} J_{\min}(G_{1})\|F\|^p + \frac{1}{1 + \beta g} J_{\min}(G_{2})\|\text{Cof } F\|q + \frac{g}{\gamma} J_{3}^{-\frac{\gamma}{\gamma}}$$

$$= c_{1}^{+}\|F\|^p + c_{2}^{+}\|\text{Cof } F\|q + \frac{g}{\gamma} J_{3}^{-\frac{\gamma}{\gamma}},$$

(A.4)

for some given constants $c_{1}^{+}, c_{2}^{+} > 0$. In case that γ is positive we have shown Eq. (A.2) with $C_{1} = \min(c_{1}^{+}, c_{2}^{+})$, $C_{2} = 0$ and $p = q = 2$.

In the case where γ is negative with $0 \geq \gamma \geq -\frac{1}{2}$ we may continue estimating

$$\psi_{2}^{\text{aniso}}(F) \geq C_{1}^{+}\|F\|^p + c_{2}^{+}\|\text{Cof } F\|q + \frac{g}{\gamma} J_{3}^{-\frac{\gamma}{\gamma}}$$

$$\geq C_{1}^{+}\|F\|^p + c_{2}^{+}\|\text{Cof } F\|q - C_{3}^{+}\|\text{det } F\|^\frac{\gamma}{2}$$

$$= C_{1}^{+}\|F\|^p + c_{2}^{+}\|\text{Cof } F\|q - C_{3}^{+}\|\text{det } F\|^\frac{\gamma}{2}$$

$$\geq C_{1}^{+}\|F\|^p + c_{2}^{+}\|\text{Cof } F\|q - C_{3}^{+}\|\text{det } F\|1, \quad 0 \leq |\gamma| \leq \frac{1}{2},$$

$$\geq C_{1}^{+}\|F\|^p + c_{2}^{+}\|\text{Cof } F\|q - C_{3}^{+}\left[\frac{1}{\sqrt{3}}\|\text{Cof } F\|^{3/2} + 1\right].$$

(A.5)

It is obvious that for all $k_{1}, k_{2} > 0$ there exist numbers $\hat{k}_{1}, \hat{k}_{2} > 0$ such that

$$\forall x \in \mathbb{R}^{+} : k_{1} x^{2} - k_{2} x^{3/2} \geq \hat{k}_{1} x^{3/2} - \hat{k}_{2}.$$

(A.6)

Applying this reasoning on $x = \|\text{Cof } F\|$ yields the existence of numbers $C_{2}^{+}, C_{3}^{+} > 0$ such that

$$\psi_{2}^{\text{aniso}}(F) \geq C_{1}^{+}\|F\|^p + c_{2}^{+}\|\text{Cof } F\|q - C_{3}^{+}\left[\frac{1}{\sqrt{3}}\|\text{Cof } F\|^{3/2} + 1\right]$$

$$\geq C_{1}^{+}\|F\|^p + c_{2}^{+}\|\text{Cof } F\|q - C_{3}^{+}.$$

(A.7)

This shows local coercivity with $C_{1} = \min(c_{1}^{+}, c_{2}^{+})$ and $p = 2$ and $q = \frac{3}{2}$ also for $0 \geq \gamma \geq -\frac{1}{2}$.

References

