NAKAJIMA’S PROBLEM FOR GENERAL CONVEX BODIES

DANIEL HUG

ABSTRACT. For a convex body $K \subset \mathbb{R}^n$, the kth projection function of K assigns to any k-dimensional linear subspace of \mathbb{R}^n the k-volume of the orthogonal projection of K to that subspace. Let K and K_0 be convex bodies in \mathbb{R}^n, let K_0 be centrally symmetric and satisfy a weak curvature assumption. Let $i, j \in \mathbb{N}$ be such that $1 \leq i < j \leq n-2$ with $(i, j) \neq (1, n-2)$. Assume that K and K_0 have proportional ith projection function and proportional jth projection function. Then we show that K and K_0 are homothetic. If K_0 is a Euclidean ball, we thus obtain characterizations of Euclidean balls as convex bodies having constant i-brightness and constant j-brightness.

1. INTRODUCTION AND STATEMENT OF RESULTS

Nakajima’s problem is concerned with the determination of convex bodies in \mathbb{R}^n by two projection functions. A convex body in Euclidean space \mathbb{R}^n is a compact convex set with nonempty interior. Let $\mathbb{G}(n, k)$ be the Grassmannian of k-dimensional linear subspaces of \mathbb{R}^n, $k \in \{0, \ldots, n\}$. The kth projection function $\pi_k(K)$ of a convex body K is defined by

$$\pi_k(K) : \mathbb{G}(n, k) \to \mathbb{R}, \quad L \mapsto V_k(K|L),$$

where $V_k(K|L)$ is the k-volume of the orthogonal projection $K|L$ of K to L. For a Euclidean ball, all projection functions are constant functions. A converse statement is true for centrally symmetric convex bodies: A centrally symmetric convex body K having one constant projection function $\pi_k(K)$, for some $k \in \{1, \ldots, n-1\}$, must be a Euclidean ball.

Examples of non-spherical convex bodies having one constant projection function are well known. For $k=1$ these are the bodies of constant width, which have been studied extensively. See the surveys [4], [15]. The case $k=n-1$ of convex bodies of constant brightness has first been studied by Blaschke who constructed smooth bodies of revolution with constant brightness. Further examples, also without rotational symmetry, can be obtained by approximation and convolution arguments, applied to surface area measures of convex bodies (cf. [14]). In the intermediate cases, i.e. for $2 \leq k \leq n-2$, the classical examples of smooth convex bodies with constant kth projection function (bodies of constant k-brightness) are bodies of revolution. The existence of such bodies has been shown by Firey [7] (cf. also [13]). In [12], Goodey and Howard prove the existence of smooth convex bodies with constant k-brightness not having rotational symmetry and obtain a parametric description of these bodies, for $2 \leq k \leq n-3$. They also provide new examples of smooth bodies of revolution having constant brightness, for $2 \leq k \leq n-2$, by a perturbation argument.

Date: July 12, 2007.

2000 Mathematics Subject Classification. 52A20, 52A21, 52A38, 52A40.

Key words and phrases. Constant width, constant brightness, projection function, characterization of Euclidean balls.

The author was supported in part by the European Network PHD, FP6 Marie Curie Actions, RTN, Contract MCRN-511953.
In its original form, Nakajima’s problem asks whether two constant projection functions are sufficient to characterize balls [19]; see [3, 4, 6, 8, 10, 15]. In dimension three and for smooth convex bodies the affirmative answer has been given by Nakajima himself in the early 20th century. Recently, in \(\mathbb{R}^3 \) the smoothness hypothesis has been removed by Ralph Howard. By a well-known reduction argument, this implies also an affirmative answer for the case of constant width and constant 2-brightness in arbitrary dimensions. For smooth convex bodies in general dimensions, Nakajima’s problem has been settled in [17] with the exception of two cases. Further results for general convex bodies have subsequently been obtained in [18].

In the present paper, we consider a centrally symmetric convex body \(K_0 \) in place of the Euclidean ball. We do not assume any smoothness of \(K \) or \(K_0 \) and settle most of the unresolved cases. The approach developed in [18] and based on [17] is crucial and will be refined further.

Theorem 1.1. Let \(K, K_0 \) be convex bodies in \(\mathbb{R}^n \), and let \(K_0 \) be centrally symmetric with positive principal radii of curvature on some Borel subset of the unit sphere of positive measure. Let \(1 \leq i < j \leq n - 2 \) be integers with \((i, j) \neq (1, n - 2)\). Assume that there are positive constants \(\alpha, \beta \) such that

\[
\pi_i(K) = \alpha \pi_i(K_0) \quad \text{and} \quad \pi_j(K) = \beta \pi_j(K_0).
\]

Then \(K \) and \(K_0 \) are homothetic.

In [17], the cases \((1, j)\) with \(j < (n + 1)/2 \) and \((1, 3)\) (for \(n = 5 \)) have been settled. Thus the cases which remain open are the following: \((1, n - 2)\) for \(n \geq 6 \), and \((i, n - 1)\) for \(n \geq 4 \), in the general setting. For smooth convex bodies, the cases \((1, n - 1)\) and \((n - 2, n - 1)\) are still unresolved.

The assumption of positive principal radii of curvature on a set of positive measure on the unit sphere is equivalent to requiring that the determinant of the Hessian matrix of the support function of \(K_0 \) is nonzero on a set of unit vectors of positive measure. The Hessian is defined for almost all unit vectors due to Aleksandrov’s theorem. For instance, the assumption is satisfied, if \(K_0 \) contains a small smooth piece in its boundary with positive Gauss curvature. However, polytopes do not satisfy the assumption.

The special case where \(K_0 \) is a Euclidean ball is the following corollary.

Corollary 1.2. Let \(K \) be a convex body in \(\mathbb{R}^n \). Let \(1 \leq i < j \leq n - 2 \) be integers with \((i, j) \neq (1, n - 2)\). Assume that \(K \) has constant \(i \)-brightness and constant \(j \)-brightness. Then \(K \) is a Euclidean ball.

Nakajima’s problem is closely related to the problem of determining a convex body from its projection functions. We say that a convex body \(K_0 \) is determined by its \(k \)th projection function \(\pi_k(K_0) \), if for any convex body \(K \) with \(\pi_k(K) = \pi_k(K_0) \) it follows that \(K_0 \) is a translate of \(K \) or a translate of \(K^* \) (the reflection of \(K \) in the origin). Continuing work of Schneider [21], Christina Bauer [1] showed that special convex polytopes \(P \) are determined by just one projection function \(\pi_k(P) \), where \(2 \leq k \leq n - 2 \). From this she deduced that most convex bodies are determined by their \(k \)th projection function. For \(k = 1 \) and \(k = n - 1 \) convex bodies which are determined by their \(k \)th projection function must be centrally symmetric. In striking contrast to these results, Campi [2], Gardner and Volčič [9], and Goodey, Schneider and Weil [11, 10] constructed examples of non-congruent pairs of convex bodies \(K, K_0 \) for which \(\pi_k(K) = \pi_k(K_0) \) holds for all \(k = 1, \ldots, n \). The latter authors even exhibit a dense set of convex bodies not determined by all of their projection functions. This clearly shows that in general some additional assumption on \(K_0 \)
such as central symmetry cannot be avoided. A result by Chakerian and Lutwak implies that a centrally symmetric convex body \(K_0 \) is determined by any two of its projection functions. This does not solve Nakajima’s problem, since here the assumption is more restrictive. However, we will use the result from [5] as an important ingredient in our proof.

I am grateful to Paul Goodey and Ralph Howard for showing me their manuscript [12] prior to publication.

2. PREPARATIONS

Let \(\langle \cdot, \cdot \rangle \) denote the scalar product and \(S^{n-1} \) the unit ball of \(\mathbb{R}^n \). The support function \(h_K \) of a convex body \(K \) is \(h_K(u) = \max \{ \langle x, u \rangle : x \in K \}, u \in \mathbb{R}^n \). It is positively homogeneous of degree one and convex. By Aleksandrov’s theorem on second order differentiability of convex functions, the second differential \(d^2 h_K(x) \) in Aleksandrov’s sense exists for almost all (with respect to Lebesgue measure) \(x \in \mathbb{R}^n \). Here \(d^2 h_K(x) \) is considered as a linear map of \(\mathbb{R}^n \). Homogeneity implies that the second order differential also exists for almost all (with respect to spherical Lebesgue measure) unit vectors \(u \in S^{n-1} \).

For further explanations and definitions we refer to [20] and [18].

In the following, we write \(h \) for the support function of \(K \) and \(h_0 \) for the support function of a convex body \(K_0 \). Let \(h \) be second order differentiable at \(u \in S^{n-1} \). The restriction \(d^2 h(u)|u^\perp \) of the linear map \(d^2 h(u) \) to the orthogonal complement \(u^\perp \) of \(u \) is a selfadjoint linear map with respect to the Euclidean structure. The \(n-1 \) real and nonnegative eigenvalues of \(d^2 h(u)|u^\perp \) are the principal radii of curvature of \(K \). By Aleksandrov’s theorem, these radii of curvature are defined for almost all unit vectors \(u \). The product of the radii of curvature of \(K \) in direction \(u \) is just \(\det (d^2 h(u)|u^\perp) \), the determinant of the Hessian of the support function of \(K \), whenever the second differential exists.

The determinant of the Hessian of the support function of a convex body \(K \) is related to the surface area measure \(S_{n-1}(K; \cdot) \) of \(K \) of order \(n-1 \). The connection can be described as follows. The surface area measure \(S_{n-1}(K; \cdot) \) is a measure on the Borel sets of the unit sphere. It can be defined via a local Steiner formula or as the \((n-1) \)-dimensional Hausdorff measure of the reverse spherical image of Borel sets on the unit sphere (cf. [20]). The Radon-Nikodym derivative of the surface area measure of \(K \) can be expressed in terms of the support function \(h \) of \(K \), at points of second order differentiability of \(h \). To state a precise result, for a fixed unit vector \(u \in S^{n-1} \) and \(i \in \mathbb{N} \), we put \(\omega_i := \{ v \in S^{n-1} : \langle v, u \rangle \geq 1 - (2i)^{-1} \} \). Hence \(\omega_i \downarrow \{u\} \), as \(i \to \infty \), in the sense of Hausdorff convergence of closed sets. Further we write \(\sigma_{n-1} \) for spherical Lebesgue measure.

Lemma 2.1. Let \(K \subset \mathbb{R}^n \) be a convex body. If \(u \in S^{n-1} \) is a point of second order differentiability of the support function \(h \) of \(K \), then

\[
\lim_{i \to \infty} \frac{S_{n-1}(K; \omega_i)}{\sigma_{n-1}(\omega_i)} = \det (d^2 h(u)|u^\perp).
\]

The connection of the surface area measure \(S_{n-1}(K; \cdot) \) of a convex body \(K \) to the projection function of order \(n-1 \) of \(K \) is given by the following well-known equation. If \(u \) is a unit vector, then

\[
\pi_{n-1}(K)(u^\perp) = \frac{1}{2} \int_{S^{n-1}} |\langle v, u \rangle| S_{n-1}(K; dv),
\]

for all unit vectors \(u \). We will apply this relation with respect to subspaces of \(\mathbb{R}^n \) as ambient spaces.
For nonnegative numbers x_1, \ldots, x_{n-1} and $I \subset \{1, \ldots, n-1\}$ we define

$$x_I := \prod_{i \in I} x_i$$

which is defined as 1 if $I = \emptyset$.

The following lemma is proved in [12].

Lemma 2.2. Let $2 \leq k \leq n-3$, $b > 0$, and let x_1, \ldots, x_{n-1} and y_1, \ldots, y_{n-1} be positive numbers. Assume that $x_I + y_I = 2b$ whenever $I \subset \{1, \ldots, n-1\}$ with $|I| = k$. Then there is a subset $R \subset \{1, \ldots, n-1\}$ with $|R| = n-2$ and there are numbers $x, y > 0$ such that $x_i = x$ and $y_i = y$ for $i \in R$.

Proof. First, we consider the case $k = n-3$.

Assume that $x_1 \neq x_2$. Then, for $i \in \{3, \ldots, n-1\}$,

$$x_1 \cdot x_3 \cdots \hat{x}_i \cdots x_{n-1} + y_1 \cdot y_3 \cdots \hat{y}_i \cdots y_{n-1} = 2b,$$

$$x_2 \cdot x_3 \cdots \hat{x}_i \cdots x_{n-1} + y_2 \cdot y_3 \cdots \hat{y}_i \cdots y_{n-1} - y_i \cdot y_3 \cdots \hat{y}_i \cdots y_{n-1} = 2b.$$

The notation \hat{x}_i means that x_i is omitted from the product. Subtracting the first equation from the second, we get

$$(x_2 - x_1) \cdot x_3 \cdots \hat{x}_i \cdots x_{n-1} + (y_2 - y_1) \cdot y_3 \cdots \hat{y}_i \cdots y_{n-1} = 0.$$\(\text{Hence } y_1 \neq y_2 \text{ and}\)

$$\frac{x_2 - x_1}{y_1 - y_2} = \frac{y_3 \cdots \hat{y}_i \cdots y_{n-1}}{x_3 \cdots \hat{x}_i \cdots x_{n-1}},$$

for $i = 3, \ldots, n-1$. This implies that there is a constant $c > 0$ such that $y_i = c \cdot x_i$ for $i = 3, \ldots, n-1$. Since

$$x_3 \cdots \hat{x}_i \cdots x_{n-1} \left(x_1 + y_1 e^{n-4}\right) = 2b$$

for $i = 3, \ldots, n-1$ and $n-1 \geq 4$, we conclude that $x := x_3 = \ldots = x_{n-1}$, and therefore also $y := y_3 = \ldots = y_{n-1}$.

If $x_2 = x_3$, then

$$x^{n-3} + y_2 y^{n-4} = 2b.$$

Moreover, from $x_3 \cdots x_{n-1} + y_3 \cdots y_{n-1} = 2b$ we obtain

$$x^{n-3} + y^{n-3} = 2b.$$\(\text{We conclude that } y_2 = y. \text{ Thus we can choose } R = \{2, \ldots, n-1\}.\)

Finally, if $x_2 \neq x_3$, then the first part of the proof shows that necessarily

$$x_1 = x_4 = \cdots = x_{n-1} \quad \text{and} \quad y_1 = y_4 = \cdots = y_{n-1}.$$\(\text{We know that } x_3 = x_4 \text{ and } y_3 = y_4. \text{ Hence we can choose } R = \{1, \ldots, n-1\} \setminus \{2\}.\)

This completes the proof of the special case $k = n-3$. Now let $2 \leq k \leq n-3$. Then the cardinality of $\{x_1, \ldots, x_{n-1}\}$ is at most 2. In fact, for any numbers $1 \leq i_1 < i_2 < i_3 \leq n-1$ there is a set $I \subset \{1, \ldots, n-1\}$ with $\{i_1, i_2, i_3\} \subset I$ and $|I| = k + 2$. Then $x_i, y_i, i \in I$, satisfy the assumptions of the special case, which implies that the cardinality of the set $\{x_i, x_{i_2}, x_{i_3}\}$ is at most 2.

Thus (after a permutation of indices) we can assume that there is some $l \in \{0, \ldots, n-1\}$ such that $x_1 = \ldots = x_l =: x \neq x := x_{l+1} = \ldots = x_{n-1}$. Assume that $2 \leq l \leq n-3$. Then $x_1 = x_2 \neq x_{n-2} = x_{n-1}$. Choosing I such that $\{1, 2, n-2, n-1\} \subset I \subset \{1, \ldots, n-1\}$ and $|I| = k + 2 \geq 4$, we obtain a contradiction by applying the special case already established. Hence there is a set $R \subset \{1, \ldots, n-1\}$ with $|R| = n-2$ and a number $x > 0$ such that $x_i = x$ for $i \in R$.
By what we have shown and by the assumption, \(x^k + y_I = 2b \) for \(I \subset R \) with \(|I| = k \). Hence \(y_I = y_I \) for all \(I, I' \subset R \) with \(|I| = |I'| = k \). Since \(2 \leq k \leq n - 3 \), there is some \(y > 0 \) such that \(y_i = y \) for all \(i \in R \).

3. Proof

We can assume that \(\alpha = 1 \). Then by assumption

\[
V_i(K|U) = V_i(K_0|U) \quad \text{and} \quad V_j(K|L) = \beta V_j(K_0|L)
\]

for \(U \in \mathbb{G}(n, i) \) and \(L \in \mathbb{G}(n, j) \). Fix \(L \) and consider \(U \subset L \). Then \(K|L \) and \(K_0|L \) belong to the same \(i \)-th projection class with respect to \(L \) and \(K_0|L \) is centrally symmetric. By a result of Chakerian and Lutwak \[5\]

\[
V_j(K_0|L) \geq V_j(K|L)
\]

with equality if and only if \(K_0|L \) is a translate of \(K|L \). Hence, for \(L \in \mathbb{G}(n, j) \),

\[
V_j(K|L) = \beta V_j(K_0|L) \geq \beta V_j(K|L).
\]

Thus \(\beta \leq 1 \) with equality if and only if \(K_0|L \) is a translate of \(K|L \) for all \(L \in \mathbb{G}(n, j) \).

The remaining part of the proof is devoted to showing that also \(\beta \geq 1 \). Once this has been established, it follows that \(K_0|L \) is a translate of \(K|L \) for all \(L \in \mathbb{G}(n, j) \), and hence \(K_0 \) is a translate of \(K \).

Let \(P \) be the set of all \(u \in S^{n-1} \) such that \(h \) and \(h_0 \) (the support functions of \(K \) and \(K_0 \)) are second order differentiable at \(u \) and at \(-u \) and \(\det (d^2 h_0(u)|u^\perp) \neq 0 \). By Aleksandrav’s theorem and by assumption the set \(P \) has positive spherical Lebesgue measure. In particular, \(P \neq \emptyset \). Hence we can choose a vector \(u \in P \) which will be fixed for the rest of the proof.

Next we choose \(W \in \mathbb{G}(n, j + 1) \) with \(u \in W \) and put \(U := u^\perp \cap W \in \mathbb{G}(n, j) \). From

\[
V_j((K|W)|U) = \beta V_j((K_0|W)|U)
\]

we get

\[
\int_{S^{n-1} \cap W} |\langle v, u \rangle| S^W_j (K|W; dv) + \int_{S^{n-1} \cap W} |\langle v, u \rangle| S^W_j (K^*|W; dv)
\]

\[
= 2\beta \int_{S^{n-1} \cap W} |\langle v, u \rangle| S^W_j (K_0|W; dv),
\]

where the upper index \(W \) indicates that the measure is considered with respect to \(W \) as the ambient space. The injectivity of the cosine transform on even measures yields

\[
S^W_j (K|W; \cdot) + S^W_j (K^*|W; \cdot) = 2\beta S^W_j (K_0|W; \cdot).
\]

Since \(u \in P \), \(h_K|W \), \(h_K^*|W \) and \(h_{K_0}|W \) are second order differentiable at \(u \) with respect to \(W \) as the ambient space. Hence Lemma \[2.7\] applied in \(W \) yields

\[
\det (d^2 h_K|W(u)|u^\perp \cap W) + \det (d^2 h_{K^*|W}(u)|u^\perp \cap W)
\]

\[
= 2\beta \det (d^2 h_{K_0}|W(u)|u^\perp \cap W).
\]

To rewrite this relation, we define the linear maps

\[
L(h)(u) := d^2 h(u)|u^\perp : u^\perp \rightarrow u^\perp,
\]

\[
L(h_0)(u) := d^2 h_0(u)|u^\perp : u^\perp \rightarrow u^\perp.
\]

Using the exterior calculus as in \[17\], \[18\], we arrive at

\[
\Lambda^j L(h)(u) + \Lambda^j L(h)(-u) = 2\beta \Lambda^j L(h_0)(u).
\]
Since \(L(h_0)(u) \) is an isomorphism, due to our choice of \(u \in \mathbb{P} \), we can define
\[
L_{h_0}(h)(u) := L(h_0)(u)^{-1/2} \circ L(h)(u) \circ L(h_0)(u)^{-1/2}.
\]
As in [17], [18] we thus obtain
\[
\wedge^j L_{h_0}(h)(u) + \wedge^j L_{h_0}(h)(-u) = 2\beta \wedge^j \text{id}, \tag{3.1}
\]
where \(\text{id} \) is the identity map on \(u^\perp \). In the same way, we also get
\[
\wedge^j L_{h_0}(h)(u) + \wedge^j L_{h_0}(h)(-u) = 2 \wedge^j \text{id}. \tag{3.2}
\]
In this situation, Lemma 3.4 in [17] implies that \(L_{h_0}(h)(u) \) and \(L_{h_0}(h)(-u) \) have a common orthonormal basis of eigenvectors \(e_1, \ldots, e_{n-1} \), where \(x_1, \ldots, x_{n-1} \) denote the corresponding eigenvalues (relative principal radii of curvature) of \(L_{h_0}(h)(u) \) and \(y_1, \ldots, y_{n-1} \) are the eigenvalues of \(L_{h_0}(h)(-u) \). Applying these basis vectors to (3.2) and (3.1), we get the polynomial equations
\[
\begin{cases}
x_I + y_I = 2, & |I| = i, \\
x_J + y_J = 2\beta, & |J| = j,
\end{cases} \tag{3.3}
\]
where \(I, J \subset \{1, \ldots, n-1\} \).

We distinguish three cases.

Case 1: \(x_i = 0 \) for some \(i \in \{1, \ldots, n-1\} \). Assume that \(x_1 = 0 \). Then \(y_1 \cdot y_{j'} = 2\beta \) whenever \(J' \subset \{2, \ldots, n-1\} \) with \(|J'| = j - 1\). This immediately implies that \(y_i > 0 \) for \(i = 1, \ldots, n-1 \), and then \(y_{j'} = y_{j''} \) for all \(J', J'' \subset \{2, \ldots, n-1\} \) with \(|J'| = |J''| = j - 1\). Thus we conclude that \(y_2 = \ldots = y_{n-1} := y \).

If also \(x_i = 0 \) for some \(i \neq 1 \), say \(x_2 = 0 \), then in the same way we get \(y_1 = y_3 = \ldots = y_{n-1} = y \). Hence \(y_1 = \ldots = y_{n-1} = y \). But then \(y_1 = 2 \) and \(y_{j'} = 2\beta \) by (3.3), which implies that \(\beta \geq 1 \).

If \(x_2, \ldots, x_{n-1} > 0 \), then we infer that \(x_I + y_I = 2 \) whenever \(I \subset \{2, \ldots, n-1\} \) with \(|I| = i \). This shows that \(x_I = x_{I'} \) for \(I, I' \subset \{2, \ldots, n-1\} \) with \(1 \leq |I| = |I'| = i \leq n - 3 \). Clearly, this implies that \(x_{n-1} = x_{n-1} \). Therefore by (3.3) we have
\[
x_i + y_i = 2, \quad x_j + y_j = 2\beta.
\]
By Jensen’s inequality,
\[
1 = \frac{x_i + y_i}{2} = \left(\frac{x_i + y_i}{2} \right)^{j/i} \leq \frac{(x_i^{j/i}) + (y_i^{j/i})}{2} = \beta,
\]
i.e. \(\beta \geq 1 \).

Case 2: \(y_i = 0 \) for some \(i \in \{1, \ldots, n-1\} \). This is treated as Case 1.

Case 3: \(x_1, \ldots, x_{n-1} > 0 \) and \(y_1, \ldots, y_{n-1} > 0 \). We can apply Lemma 2.2 with \(k = i \) or \(k = j \) (as appropriate) and combine this information with (3.3) to get
\[
x_i + y_i = 2, \quad x_j + y_j = 2\beta.
\]
Here again we use that \(j \leq n - 2 = |R| \), where \(R \) is as in Lemma 2.2. By Jensen’s inequality, we deduce that \(\beta \geq 1 \).

As described before, this concludes the proof in all cases that can occur.
REFERENCES

FACHBEREICH MATHEMATIK, UNIVERSITÄT DUISBURG-ESSEN, CAMPUS ESSEN, D-45117 ESSEN, GERMANY

E-mail address: daniel.hug@uni-due.de
URL: http://www.uni-due.de/~hm0045