Shalika models and p-adic L-function

Lennart Gehrmann

Fakultät für Mathematik
Universität Duisburg-Essen

20. April 2018
Structure of talk

1. Main Theorem
2. Period integrals
3. P-adic interpolation
F totally real number field

V = \(\otimes V_v \) cuspidal automorphic representation of \(GL_{2n} / F \) such that

- \(V \) is cohomological with respect to \(V_{al} \)
- \(V \) has a Shalika model

Examples:

- \(f \) modular form of weight \(k \geq 2 \) - \(V_{al} = Sym^{k-2} \mathbb{C}^2 \)
- \(\sim \) \(Sym^3 f \) "symmetric cube"
Setup

\(F \) totally real number field
\(V = \otimes V_v \) cuspidal automorphic representation of \(GL_{2n}/F \) such that

- \(V \) is cohomological with respect to \(V_{al} \)
- \(V \) has a Shalika model

Examples:

- \(f \) modular form of weight \(k \geq 2 \) - \(V_{al} = \text{Sym}^{k-2} \mathbb{C}^2 \)
- \(\sim \) \(\text{Sym}^3 f \) "symmetric cube"
Setup

\(F \) totally real number field
\(V = \otimes V_v \) cuspidal automorphic representation of \(\text{GL}_{2n} / F \) such that

- \(V \) is cohomological with respect to \(V_{al} \)
- \(V \) has a Shalika model

Examples:

- \(f \) modular form of weight \(k \geq 2 \) - \(V_{al} = \text{Sym}^{k-2} \mathbb{C}^2 \)
- \(\sim \text{Sym}^3 f \) "symmetric cube"
Setup

\(F \) totally real number field
\(V = \bigotimes V_v \) cuspidal automorphic representation of \(\text{GL}_{2n}/F \) such that

- \(V \) is cohomological with respect to \(V_{al} \)
- \(V \) has a Shalika model

Examples:

- \(f \) modular form of weight \(k \geq 2 \) - \(V_{al} = \text{Sym}^{k-2} \mathbb{C}^2 \)
- \(\sim \) \(\text{Sym}^3 f \) "symmetric cube"
Setup

F totally real number field
$V = \otimes V_v$ cuspidal automorphic representation of GL_{2n}/F such that

- V is cohomological with respect to V_{al}
- V has a Shalika model

Examples:

- f modular form of weight $k \geq 2$ - $V_{al} = Sym^{k-2} \mathbb{C}^2$
- $\rightsquigarrow \text{Sym}^3 f$ "symmetric cube"
Setup

F totally real number field

\[V = \bigotimes V_v \] cuspidal automorphic representation of *GL*$_{2n}$/*F* such that

- \(V \) is cohomological with respect to \(V_{al} \)
- \(V \) has a Shalika model

Examples:

- \(f \) modular form of weight \(k \geq 2 \) - \(V_{al} = \text{Sym}^{k-2} \mathbb{C}^2 \)
- \(\rightsquigarrow \) \(\text{Sym}^3 f \) "symmetric cube"
Setup II

F_∞ maximal abelian unramified outside p and ∞ extension of F

$G_p = \text{Gal}(F_\infty, F)$

s critical (half-)integer of V

Aim: p-adically interpolate $L(V \otimes \chi, s)$ for

$$
\chi : G_p \rightarrow \mathbb{C}^*
$$

More precisely: Construct p-adic measure μ on G_p such that

$$
\int_{G_p} \chi d\mu = E(\chi) \cdot L(V \otimes \chi, s)
$$
Setup II

\[F_\infty \text{ maximal abelian unramified outside } p \text{ and } \infty \text{ extension of } F \]
\[G_p = \text{Gal}(F_\infty, F) \]
\[s \text{ critical (half-)integer of } V \]

Aim: \(p \)-adically interpolate \(L(V \otimes \chi, s) \) for

\[\chi : G_p \to \mathbb{C}^* \]

More precisely: Construct \(p \)-adic measure \(\mu \) on \(G_p \) such that

\[\int_{G_p} \chi d\mu = E(\chi) \cdot L(V \otimes \chi, s) \]
Setup II

F_∞ maximal abelian unramified outside p and ∞ extension of F

$\mathcal{G}_p = \text{Gal}(F_\infty, F)$

s critical (half-)integer of V

Aim: p-adically interpolate $L(V \otimes \chi, s)$ for

$$\chi: \mathcal{G}_p \to \mathbb{C}^*$$

More precisely: Construct p-adic measure μ on \mathcal{G}_p such that

$$\int_{\mathcal{G}_p} \chi d\mu = E(\chi) \cdot L(V \otimes \chi, s)$$
Setup II

F_∞ maximal abelian unramified outside p and ∞ extension of F

$G_p = \text{Gal}(F_\infty, F)$

s critical (half-)integer of V

Aim: p-adically interpolate $L(V \otimes \chi, s)$ for

$$\chi: G_p \to \mathbb{C}^*$$

More precisely: Construct p-adic measure μ on G_p such that

$$\int_{G_p} \chi d\mu = E(\chi) \cdot L(V \otimes \chi, s)$$
Setup II

\[F_\infty \text{ maximal abelian unramified outside } p \text{ and } \infty \text{ extension of } F \]
\[G_p = \text{Gal}(F_\infty, F) \]

\(s \) critical (half-)integer of \(V \)

Aim: \(p \)-adically interpolate \(L(V \otimes \chi, s) \) for

\[\chi : G_p \to \mathbb{C}^* \]

More precisely: Construct \(p \)-adic measure \(\mu \) on \(G_p \) such that

\[\int_{G_p} \chi d\mu = E(\chi) \cdot L(V \otimes \chi, s) \]
Setup II

F_∞ maximal abelian unramified outside p and ∞ extension of F

$G_p = \text{Gal}(F_\infty, F)$

s critical (half-)integer of V

Aim: p-adically interpolate $L(V \otimes \chi, s)$ for

$$\chi: G_p \to \mathbb{C}^*$$

More precisely: Construct p-adic measure μ on G_p such that

$$\int_{G_p} \chi d\mu = E(\chi) \cdot L(V \otimes \chi, s)$$
Setup II

F_∞ maximal abelian unramified outside p and ∞ extension of F

$G_p = \text{Gal}(F_\infty, F)$

s critical (half-)integer of V

Aim: p-adically interpolate $L(V \otimes \chi, s)$ for

$$\chi : G_p \to \mathbb{C}^*$$

More precisely: Construct p-adic measure μ on G_p such that

$$\int_{G_p} \chi d\mu = E(\chi) \cdot L(V \otimes \chi, s)$$
Suppose

- V admits a weak ordinary p-stabilization Θ
- $V_p \otimes V_{al}$ is cohomologically integral

Then such a measure μ exists.

Ash-Ginzburg 1994, Dimitrov-Januszewski-Raghuram 2018
Theorem

Theorem (G.)

Suppose

- V admits a weak ordinary p-stabilization Θ
- $V_p \otimes V_{al}$ is cohomologically integral

Then such a measure μ exists.

Ash-Ginzburg 1994, Dimitrov-Januszewski-Raghuram 2018
Theorem (G.)

Suppose

- V admits a weak ordinary p-stabilization Θ
- $V_p \otimes V_{al}$ is cohomologically integral

Then such a measure μ exists.

Ash-Ginzburg 1994, Dimitrov-Januszewski-Raghuram 2018
Theorem

Theorem (G.)

Suppose

- V admits a weak ordinary p-stabilization Θ
- $V_p \otimes V_{\text{al}}$ is cohomologically integral

Then such a measure μ exists.

Ash-Ginzburg 1994, Dimitrov-Januszewski-Raghuram 2018
<table>
<thead>
<tr>
<th></th>
<th>Main Theorem</th>
</tr>
</thead>
<tbody>
<tr>
<td>2</td>
<td>Period integrals</td>
</tr>
<tr>
<td>3</td>
<td>P-adic interpolation</td>
</tr>
</tbody>
</table>

Shalika models and p-adic L-function
Modular forms

\[L(f, 1) = -2\pi i \int_0^{i\infty} f(z)dz \]

First observation:
cycle from 0 to \(\infty \) is orbit of maximal torus in \(GL_2(\mathbb{R}) \)
Second observation:
If \(k = 2 \), then
\[f \in H^1_c(\Gamma \backslash \mathbb{H}, \mathbb{C}) \]
\(\rightsquigarrow \) integral is a cap product
Modular forms

\[L(f, 1) = -2\pi i \int_{0}^{i\infty} f(z)dz \]

First observation:
cycle from 0 to \(\infty \) is orbit of maximal torus in \(GL_2(\mathbb{R}) \)
Second observation:
If \(k = 2 \), then
\[f \in H^1_c(\Gamma \backslash \mathbb{H}, \mathbb{C}) \]
\(\mapsto \) integral is a cap product
Main Theorem
Period integrals
P-adic interpolation

Modular forms

\[L(f, 1) = -2\pi i \int_0^{i\infty} f(z)dz \]

First observation:
cycle from 0 to \(\infty \) is orbit of maximal torus in \(GL_2(\mathbb{R}) \)

Second observation:
If \(k = 2 \), then \(f \in H^1_c(\Gamma \backslash \mathbb{H}, \mathbb{C}) \)

\(\Rightarrow \) integral is a cap product
Modular forms

\[L(f, 1) = -2\pi i \int_0^{i\infty} f(z) dz \]

First observation:
cycle from 0 to \(\infty \) is orbit of maximal torus in \(GL_2(\mathbb{R}) \)
Second observation:
If \(k = 2 \), then
\[f \in H^1_c(\Gamma \backslash \mathbb{H}, \mathbb{C}) \]
\(\Rightarrow \) integral is a cap product
Modular forms

\[L(f, 1) = -2\pi i \int_0^{i\infty} f(z)\,dz \]

First observation:

cycle from 0 to \(\infty \) is orbit of maximal torus in \(GL_2(\mathbb{R}) \)

Second observation:

If \(k = 2 \), then

\[f \in H^1_c(\Gamma \setminus \mathbb{H}, \mathbb{C}) \]

\(\leadsto \) integral is a cap product
Modular forms

\[L(f, 1) = -2\pi i \int_{0}^{i\infty} f(z)dz \]

First observation:
cycle from 0 to \(\infty \) is orbit of maximal torus in \(GL_2(\mathbb{R}) \)
Second observation:
If \(k = 2 \), then
\[f \in H^1_c(\Gamma \backslash \mathbb{H}, \mathbb{C}) \]
\(\rightsquigarrow \) integral is a cap product
Generalization

\[H = \text{GL}_n \times \text{GL}_n \subset G = \text{GL}_n \]
\[\hookrightarrow \text{inclusion of symmetric spaces } X_H \hookrightarrow X_G \]
\[\hookrightarrow \text{cycle } [X_H] \text{ of dimension } q \text{ on } \Gamma \backslash X_G \]

\[V \text{ cohomological with respect to } \mathbb{C} \]
\[\hookrightarrow \text{Eichler-Shimura map } \hookrightarrow \text{forms } \omega \in H^q_c(\Gamma \backslash X_G, \mathbb{C}) \]

\[\hookrightarrow \text{"period integrals" } \int_{[X_H]} \omega = ? \]
Generalization

\(H = \text{GL}_n \times \text{GL}_n \subset G = \text{GL}_{2n} \)

\(\rightsquigarrow \) inclusion of symmetric spaces \(X_H \hookrightarrow X_G \)

\(\rightsquigarrow \) cycle \([X_H]\) of dimension \(q \) on \(\Gamma \backslash X_G \)

\(V \) cohomological with respect to \(\mathbb{C} \)

\(\rightsquigarrow \) Eichler-Shimura map \(\rightsquigarrow \) forms \(\omega \in H^q_c(\Gamma \backslash X_G, \mathbb{C}) \)

\(\rightsquigarrow \) "period integrals" \(\int_{[X_H]} \omega = ? \)
Generalization

\[H = \text{GL}_n \times \text{GL}_n \subset G = \text{GL}_{2n} \]
\[\hookrightarrow \text{inclusion of symmetric spaces } X_H \hookrightarrow X_G \]
\[\hookrightarrow \text{cycle } [X_H] \text{ of dimension } q \text{ on } \Gamma \backslash X_G \]

\[V \text{ cohomological with respect to } \mathbb{C} \]
\[\hookrightarrow \text{Eichler-Shimura map } \hookrightarrow \text{forms } \omega \in H^q_c(\Gamma \backslash X_G, \mathbb{C}) \]

\[\hookrightarrow \text{"period integrals" } \int_{[X_H]} \omega = ? \]
Generalization

\[H = \text{GL}_n \times \text{GL}_n \subset G = \text{GL}_{2n} \]
\(\hookrightarrow \) inclusion of symmetric spaces \(X_H \hookrightarrow X_G \)
\(\hookrightarrow \) cycle \([X_H]\) of dimension \(q \) on \(\Gamma \backslash X_G \)

\(V \) cohomological with respect to \(\mathbb{C} \)
\(\hookrightarrow \) Eichler-Shimura map \(\hookrightarrow \) forms \(\omega \in H^q_c(\Gamma \backslash X_G, \mathbb{C}) \)

\(\hookrightarrow \) "period integrals" \(\int_{[X_H]} \omega = ? \)
Generalization

\[H = GL_n \times GL_n \subset G = GL_{2n} \]
\[\leadsto \text{inclusion of symmetric spaces } X_H \hookrightarrow X_G \]
\[\leadsto \text{cycle } [X_H] \text{ of dimension } q \text{ on } \Gamma \backslash X_G \]

\[V \text{ cohomological with respect to } \mathbb{C} \]
\[\leadsto \text{Eichler-Shimura map } \leadsto \text{forms } \omega \in H^q_c(\Gamma \backslash X_G, \mathbb{C}) \]

\[\leadsto \text{"period integrals" } \int_{[X_H]} \omega = ? \]
Generalization

\[H = GL_n \times GL_n \subset G = GL_{2n} \]

\[\rightsquigarrow \text{ inclusion of symmetric spaces } X_H \hookrightarrow X_G \]

\[\rightsquigarrow \text{ cycle } [X_H] \text{ of dimension } q \text{ on } \Gamma \backslash X_G \]

\[V \text{ cohomological with respect to } \mathbb{C} \]

\[\rightsquigarrow \text{ Eichler-Shimura map } \rightsquigarrow \text{ forms } \omega \in H^q_c(\Gamma \backslash X_G, \mathbb{C}) \]

\[\rightsquigarrow \text{ "period integrals" } \int_{[X_H]} \omega = ? \]
Generalization

\[H = \text{GL}_n \times \text{GL}_n \subset G = \text{GL}_{2n} \]
\[\hookrightarrow \text{inclusion of symmetric spaces } X_H \hookrightarrow X_G \]
\[\hookrightarrow \text{cycle } [X_H] \text{ of dimension } q \text{ on } \Gamma \backslash X_G \]

\(V \) cohomological with respect to \(\mathbb{C} \)
\[\hookrightarrow \text{Eichler-Shimura map } \hookrightarrow \text{forms } \omega \in H^q_c(\Gamma \backslash X_G, \mathbb{C}) \]

\[\hookrightarrow "\text{period integrals}" \int_{[X_H]} \omega = ? \]
Shalika models

V has a Shalika model i.e. a certain linear form does not vanish
(Friedberg-Jacquet) $\sim L(V \otimes \chi, 1/2)$ is linear combination of period integrals

Ash-Ginzburg: Construct μ by writing down explicit ω
\sim proving distribution property for μ is messy

More conceptional method?
V has a Shalika model, i.e. a certain linear form does not vanish

(Friedberg-Jacquet) $\sim \ L(V \otimes \chi, 1/2)$ is linear combination of period integrals

Ash-Ginzburg: Construct μ by writing down explicit ω
\sim proving distribution property for μ is messy

More conceptional method?
Shalika models

\(V \) has a Shalika model \(\Leftrightarrow \) i.e. a certain linear form does not vanish

(Friedberg-Jacquet) \(\Leftrightarrow L(V \otimes \chi, 1/2) \) is linear combination of period integrals

Ash-Ginzburg: Construct \(\mu \) by writing down explicit \(\omega \)
\(\Leftrightarrow \) proving distribution property for \(\mu \) is messy

More conceptional method?
Shalika models

\(V \) has a Shalika model i.e. a certain linear form does not vanish
(Friedberg-Jacquet) \(\sim \) \(L(V \otimes \chi, 1/2) \) is linear combination of period integrals

Ash-Ginzburg: Construct \(\mu \) by writing down explicit \(\omega \)
\(\sim \) proving distribution property for \(\mu \) is messy

More conceptional method?
Shalika models

V has a Shalika model i.e. a certain linear form does not vanish

(Friedberg-Jacquet) $\rightsquigarrow L(V \otimes \chi, 1/2)$ is linear combination of period integrals

Ash-Ginzburg: Construct μ by writing down explicit ω
\rightsquigarrow proving distribution property for μ is messy

More conceptional method?
Shalika models

V has a Shalika model, i.e. a certain linear form does not vanish
(Friedberg-Jacquet) $\sim L(V \otimes \chi, 1/2)$ is linear combination of period integrals

Ash-Ginzburg: Construct μ by writing down explicit ω
\sim proving distribution property for μ is messy

More conceptional method?
Group cohomology

Remember:

\[H^i(\Gamma \backslash X_G, \mathbb{C}) = H^i(\Gamma, \mathbb{C}) \]

What about cohomology with compact support?

Borel-Serre compactification yields

\[H^i_c(\Gamma \backslash X_G, \mathbb{C}) = H^{i-l}(\Gamma, \text{Hom}(D_G, \mathbb{C})) \]

\(D_G \) "Steinberg module" - free \(\mathbb{Z} \)-module of infinite rank

Example: \(G = GL_2/F \leadsto D_G = \text{Div}_0(\mathbb{P}^1(F)), \ i = 1 \)
Remember:

\[H^i(\Gamma \backslash X_G, \mathbb{C}) = H^i(\Gamma, \mathbb{C}) \]

What about cohomology with compact support?

Borel-Serre compactification yields

\[H^i_c(\Gamma \backslash X_G, \mathbb{C}) = H^{i-1}(\Gamma, \text{Hom}(D_G, \mathbb{C})) \]

\(D_G \) "Steinberg module" - free \(\mathbb{Z} \)-module of infinite rank

Example: \(G = GL_2/F \leadsto D_G = \text{Div}_0(\mathbb{P}^1(F)), \ i = 1 \)
Remember:

$$H^i(\Gamma \backslash X_G, \mathbb{C}) = H^i(\Gamma, \mathbb{C})$$

What about cohomology with compact support?

Borel-Serre compactification yields

$$H^i_c(\Gamma \backslash X_G, \mathbb{C}) = H^{i-l}(\Gamma, \text{Hom}(D_G, \mathbb{C}))$$

D_G "Steinberg module" - free \mathbb{Z}-module of infinite rank

Example: $G = GL_2/F \rightsquigarrow D_G = \text{Div}_0(\mathbb{P}^1(F))$, $l = 1$
Remember:

\[H^i(\Gamma \backslash X_G, \mathbb{C}) = H^i(\Gamma, \mathbb{C}) \]

What about cohomology with compact support?

Borel-Serre compactification yields

\[H_c^i(\Gamma \backslash X_G, \mathbb{C}) = H^{i-l}(\Gamma, \text{Hom}(D_G, \mathbb{C})) \]

\(D_G \) "Steinberg module" - free \(\mathbb{Z} \)-module of infinite rank

Example: \(G = GL_2/F \rightrightarrows D_G = \text{Div}_0(\mathbb{P}^1(F)), \ i = 1 \)
Group cohomology

Remember:

\[H^i(\Gamma \backslash X_G, \mathbb{C}) = H^i(\Gamma, \mathbb{C}) \]

What about cohomology with compact support?

Borel-Serre compactification yields

\[H^i_c(\Gamma \backslash X_G, \mathbb{C}) = H^{i-l}(\Gamma, \text{Hom}(D_G, \mathbb{C})) \]

\(D_G \) "Steinberg module" - free \(\mathbb{Z} \)-module of infinite rank

Example: \(G = GL_2/F \rightarrow D_G = \text{Div}_0(\mathbb{P}^1(F)), \ l = 1 \)
Remember:

$$H^i(\Gamma \backslash X_G, \mathbb{C}) = H^i(\Gamma, \mathbb{C})$$

What about cohomology with compact support?

Borel-Serre compactification yields

$$H^i_c(\Gamma \backslash X_G, \mathbb{C}) = H^{i-l}(\Gamma, \text{Hom}(D_G, \mathbb{C}))$$

D_G "Steinberg module" - free \mathbb{Z}-module of infinite rank

Example: $G = GL_2/F \leadsto D_G = \text{Div}_0(\mathbb{P}^1(F)), \ l = 1$
Group cohomology

Remember:

\[H^i(\Gamma \backslash X, \mathbb{C}) = H^i(\Gamma, \mathbb{C}) \]

What about cohomology with compact support?

Borel-Serre compactification yields

\[H^i_c(\Gamma \backslash X, \mathbb{C}) = H^{i-l}(\Gamma, \text{Hom}(D_G, \mathbb{C})) \]

\(D_G \) "Steinberg module" - free \(\mathbb{Z} \)-module of infinite rank

Example: \(G = GL_2/F \) \(\sim \) \(D_G = \text{Div}_0(\mathbb{P}^1(F)), \ l = 1 \)
Group cohomology

Remember:

\[H^i(\Gamma \backslash X_G, \mathbb{C}) = H^i(\Gamma, \mathbb{C}) \]

What about cohomology with compact support?

Borel-Serre compactification yields

\[H^i_c(\Gamma \backslash X_G, \mathbb{C}) = H^{i-l}(\Gamma, \text{Hom}(D_G, \mathbb{C})) \]

\(D_G \) "Steinberg module" - free \(\mathbb{Z} \)-module of infinite rank

Example: \(G = GL_2/F \sim D_G = \text{Div}_0(\mathbb{P}^1(F)), \ l = 1 \)
1. Main Theorem

2. Period integrals

3. P-adic interpolation
Cohomology of p-arithmetic groups

V_p local component of V at p (defined over number field E)
\sim modified Eichler-Shimura map
\sim classes $\omega \in H^{q-l}(\Gamma(p), \text{Hom}(D_G, \text{Hom}(V_p, \mathbb{C})))$

$\Gamma(p) \subseteq \text{PGL}_{2n}(\mathcal{O}[1/p])$ - p-arithmetic group

Evaluation:
$H^{q-l}(\Gamma(p), \text{Hom}(D_G, \text{Hom}(V_p, \mathbb{C}))) \rightarrow H^{q-l}(\Gamma, \text{Hom}(D_G, \mathbb{C}))$
compatible with classical Eichler-Shimura map
Cohomology of p-arithmetic groups

V_p local component of V at p (defined over number field E)

$\sim \rightarrow$ modified Eichler-Shimura map

$\sim \rightarrow$ classes $\omega \in H^{q-l}(\Gamma^{(p)}, \text{Hom}(D_G, \text{Hom}(V_p, \mathbb{C})))$

$\Gamma^{(p)} \subseteq PGL_{2n}(\mathcal{O}[1/p])$ - p-arithmetic group

Evaluation:

$H^{q-l}(\Gamma^{(p)}, \text{Hom}(D_G, \text{Hom}(V_p, \mathbb{C}))) \rightarrow H^{q-l}(\Gamma, \text{Hom}(D_G, \mathbb{C}))$

compatible with classical Eichler-Shimura map
Main Theorem
Period integrals
P-adic interpolation

Cohomology of p-arithmetic groups

V_p local component of V at p (defined over number field E)
\Rightarrow modified Eichler-Shimura map
\Rightarrow classes $\omega \in H^{q-l}(\Gamma(p), \text{Hom}(D_G, \text{Hom}(V_p, \mathbb{C})))$
$\Gamma(p) \subseteq \text{PGL}_{2n}(\mathcal{O}[1/p])$ - p-arithmetic group

Evaluation:
$H^{q-l}(\Gamma(p), \text{Hom}(D_G, \text{Hom}(V_p, \mathbb{C}))) \rightarrow H^{q-l}(\Gamma, \text{Hom}(D_G, \mathbb{C}))$
compatible with classical Eichler-Shimura map

Lennart Gehrmann Shalika models and p-adic L-function
Cohomology of p-arithmetic groups

*V*ₚ local component of *V* at *p* (defined over number field *E*)
\[\mapsto \text{modified Eichler-Shimura map} \]
\[\mapsto \text{classes } \omega \in H^{q-l}(\Gamma^{(p)}, \text{Hom}(D_G, \text{Hom}(V_p, \mathbb{C}))) \]
\[\Gamma^{(p)} \subseteq PGL_{2n}(O[1/p]) - p\text{-arithmetic group} \]

Evaluation:
\[H^{q-l}(\Gamma^{(p)}, \text{Hom}(D_G, \text{Hom}(V_p, \mathbb{C}))) \to H^{q-l}(\Gamma, \text{Hom}(D_G, \mathbb{C})) \]
compatible with classical Eichler-Shimura map
Main Theorem
Period integrals
P-adic interpolation

Cohomology of p-arithmetic groups

\(V_p \) local component of \(V \) at \(p \) (defined over number field \(E \))
\(\rightsquigarrow \) modified Eichler-Shimura map
\(\rightsquigarrow \) classes \(\omega \in H^{q-l}(\Gamma(p), \text{Hom}(D_G, \text{Hom}(V_p, \mathbb{C}))) \)
\(\Gamma(p) \subseteq PGL_{2n}(\mathcal{O}[1/p]) \) - \(p \)-arithmetic group

Evaluation:
\(H^{q-l}(\Gamma(p), \text{Hom}(D_G, \text{Hom}(V_p, \mathbb{C}))) \rightarrow H^{q-l}(\Gamma, \text{Hom}(D_G, \mathbb{C})) \)
compatible with classical Eichler-Shimura map

Lennart Gehrmann Shalika models and p-adic L-function
Cohomology of \(p \)-arithmetic groups

\(V_p \) local component of \(V \) at \(p \) (defined over number field \(E \))
\(\Rightarrow \) modified Eichler-Shimura map
\(\Rightarrow \) classes \(\omega \in H^{q-l}(\Gamma(p), \text{Hom}(D_G, \text{Hom}(V_p, \mathbb{C}))) \)
\(\Gamma(p) \subseteq PGL_{2n}(\mathcal{O}[1/p]) - \) \(p \)-arithmetic group

Evaluation:
\(H^{q-l}(\Gamma(p), \text{Hom}(D_G, \text{Hom}(V_p, \mathbb{C}))) \rightarrow H^{q-l}(\Gamma, \text{Hom}(D_G, \mathbb{C})) \)
compatible with classical Eichler-Shimura map
Cohomology of p-arithmetic groups

V_p local component of V at p (defined over number field E)
\leadsto modified Eichler-Shimura map
\leadsto classes $\omega \in H^{q-l}(\Gamma(p), \text{Hom}(D_G, \text{Hom}(V_p, \mathbb{C})))$
$\Gamma(p) \subseteq PGL_{2n}(\mathcal{O}[1/p])$ - p-arithmetic group

Evaluation:
$H^{q-l}(\Gamma(p), \text{Hom}(D_G, \text{Hom}(V_p, \mathbb{C}))) \to H^{q-l}(\Gamma, \text{Hom}(D_G, \mathbb{C}))$
compatible with classical Eichler-Shimura map
Rationality

Lemma

The canonical map

\[H^i(\Gamma(p), \text{Hom}(D_G, \text{Hom}(V_p, E))) \otimes \mathbb{C} \]

\[\rightarrow H^i(\Gamma(p), \text{Hom}(D_G, \text{Hom}(V_p, \mathbb{C}))) \]

is an isomorphism and the space is finite-dimensional.

Idea of proof: Schneider-Stuhler resolution

\[0 \rightarrow \text{c-ind}_{K_0}^{G_p} L_0 \rightarrow \cdots \rightarrow \text{c-ind}_{K_r}^{G_p} L_r \rightarrow V_p \rightarrow 0 \]

with \(L_j \) finite-dimensional

Shapiro’s Lemma \(\Rightarrow \) reduce to finite-dimensional coefficients
Rationality

Lemma

The canonical map

\[H^i(\Gamma(p), \text{Hom}(D_G, \text{Hom}(V_p, E))) \otimes \mathbb{C} \]

\[\rightarrow H^i(\Gamma(p), \text{Hom}(D_G, \text{Hom}(V_p, \mathbb{C}))) \]

is an isomorphism and the space is finite-dimensional.

Idea of proof: Schneider-Stuhler resolution

\[0 \rightarrow c\text{-ind}^{G_p}_{K_0} L_0 \ldots \rightarrow c\text{-ind}^{G_p}_{K_r} L_r \rightarrow V_p \rightarrow 0 \]

with \(L_j \) finite-dimensional

Shapiro’s Lemma \(\rightsquigarrow \) reduce to finite-dimensional coefficients
Lemma

The canonical map

\[H^i(\Gamma^{(p)}, \text{Hom}(D_G, \text{Hom}(V_p, E))) \otimes \mathbb{C} \]
\[\rightarrow H^i(\Gamma^{(p)}, \text{Hom}(D_G, \text{Hom}(V_p, \mathbb{C}))) \]

is an isomorphism and the space is finite-dimensional.

Idea of proof: Schneider-Stuhler resolution

0 \rightarrow \text{c-ind}_{K_0}^{G_p} L_0 \ldots \rightarrow \text{c-ind}_{K_r}^{G_p} L_r \rightarrow V_p \rightarrow 0

with \(L_j \) finite-dimensional

Shapiro’s Lemma \(\rightsquigarrow \) reduce to finite-dimensional coefficients
Rationality

Lemma

The canonical map

\[H^i(\Gamma^{(p)}, \text{Hom}(D_G, \text{Hom}(V_p, E))) \otimes \mathbb{C} \rightarrow H^i(\Gamma^{(p)}, \text{Hom}(D_G, \text{Hom}(V_p, \mathbb{C}))) \]

is an isomorphism and the space is finite-dimensional.

Idea of proof: Schneider-Stuhler resolution

\[0 \rightarrow \text{c-ind}_{K_0}^{G_p} L_0 \rightarrow \cdots \rightarrow \text{c-ind}_{K_r}^{G_p} L_r \rightarrow V_p \rightarrow 0 \]

with \(L_j \) finite-dimensional

Shapiro's Lemma \(\Rightarrow \) reduce to finite-dimensional coefficients.
Rationality

Lemma

The canonical map

\[H^i(\Gamma(\mathfrak{p}), \text{Hom}(D_G, \text{Hom}(V_p, E))) \otimes \mathbb{C} \to H^i(\Gamma(\mathfrak{p}), \text{Hom}(D_G, \text{Hom}(V_p, \mathbb{C}))) \]

is an isomorphism and the space is finite-dimensional.

Idea of proof: Schneider-Stuhler resolution

\[0 \to c\text{-ind}_{K_0}^{G_p} L_0 \ldots \to c\text{-ind}_{K_r}^{G_p} L_r \to V_p \to 0 \]

with \(L_j \) finite-dimensional

Shapiro’s Lemma \(\Rightarrow \) reduce to finite-dimensional coefficients
Main Theorem
Period integrals
P-adic interpolation

Rationality

Lemma

The canonical map

\[H^i(\Gamma^{(p)}, \text{Hom}(D_G, \text{Hom}(V_p, E))) \otimes \mathbb{C} \rightarrow H^i(\Gamma^{(p)}, \text{Hom}(D_G, \text{Hom}(V_p, \mathbb{C}))) \]

is an isomorphism and the space is finite-dimensional.

Idea of proof: Schneider-Stuhler resolution

\[0 \rightarrow c\text{-ind}_{K_0}^{G_p} L_0 \ldots \rightarrow c\text{-ind}_{K_r}^{G_p} L_r \rightarrow V_p \rightarrow 0 \]

with \(L_j \) finite-dimensional
Shapiro’s Lemma \(\rightsquigarrow \) reduce to finite-dimensional coefficients.
What about integrality?

Want integral model \mathcal{L} of V_p (over \mathbb{Z} or \mathbb{Z}_p) with resolution as before - "cohomologically integral"

\Rightarrow get integral structure on cohomology

Known in many cases:
Vignéras (GL_2), Große-Klönnne (spherical), Ollivier (ordinary)
What about integrality?
Want integral model \mathcal{L} of V_p (over \mathbb{Z} or \mathbb{Z}_p) with resolution as before - "cohomologically integral"
\implies get integral structure on cohomology

Known in many cases:
Vignéras (GL_2), Große-Klönne (spherical), Ollivier (ordinary)
What about integrality?
Want integral model \mathcal{L} of V_p (over \mathbb{Z} or \mathbb{Z}_p) with resolution as before - "cohomologically integral"
\leadsto get integral structure on cohomology

Known in many cases:
Vignéras (GL_2), Große-Klönne (spherical), Ollivier (ordinary)
What about integrality?
Want integral model \mathcal{L} of V_p (over \mathbb{Z} or \mathbb{Z}_p) with resolution as before - "cohomologically integral"
\leadsto get integral structure on cohomology

Known in many cases:
Vignéras (GL_2), Große-Klönne (spherical), Ollivier (ordinary)
What about integrality?
Want integral model \mathcal{L} of V_p (over \mathbb{Z} or \mathbb{Z}_p)
with resolution as before - "cohomologically integral"
\(\rightsquigarrow\) get integral structure on cohomology

Known in many cases:
Vignéras (GL_2), Große-Klönne (spherical), Ollivier (ordinary)
What about integrality?
Want integral model \mathcal{L} of V_p (over \mathbb{Z} or \mathbb{Z}_p) with resolution as before - "cohomologically integral"
\Rightarrow get integral structure on cohomology

Known in many cases:
Vignéras (GL_2), Große-Klönne (spherical), Ollivier (ordinary)
The map delta I

Idea: construct a map

\[\delta: \text{function space} \rightarrow V_p \]

Pullback to \(H \) yields

\[\delta^\vee: H^{q-I}(\Gamma^{(p)}, \text{Hom}(D_G, \text{Hom}(V_p, E))) \]
\[\rightarrow H^{q-I}(\Gamma^{(p)}_H, \text{Hom}(D_H, \text{distributions})) \]

Pushforward along determinant gives \(\mu \)

"weakly ordinary" \(\leadsto \delta \) respects integral models
"cohomologically integral" + "weakly ordinary" \(\Rightarrow \mu \) measure
The map delta I

Idea: construct a map

\[\delta : \text{function space} \rightarrow V_p \]

Pullback to \(H \) yields

\[\delta^\vee : H^{q-I}(\Gamma(p), \text{Hom}(D_G, \text{Hom}(V_p, E))) \]
\[\rightarrow H^{q-I}(\Gamma_H(p), \text{Hom}(D_H, \text{distributions})) \]

Pushforward along determinant gives \(\mu \)

"weakly ordinary" \(\leadsto \) \(\delta \) respects integral models
"cohomologically integral" + "weakly ordinary" \(\Rightarrow \) \(\mu \) measure
The map delta I

Idea: construct a map

$$\delta : \text{function space} \rightarrow V_p$$

Pullback to H yields

$$\delta^\vee : H^{q-I}(\Gamma^{(p)}, \text{Hom}(D_G, \text{Hom}(V_p, E)))$$

$$\rightarrow H^{q-I}(\Gamma^{(p)}_H, \text{Hom}(D_H, \text{distributions}))$$

Pushforward along determinant gives μ

"weakly ordinary" $\sim \delta$ respects integral models
"cohomologically integral" + "weakly ordinary" $\Rightarrow \mu$ measure
The map delta I

Idea: construct a map

$$\delta: \text{function space} \to V_p$$

Pullback to H yields

$$\delta^\vee: H^{q-l}(\Gamma^{(p)}, \text{Hom}(D_G, \text{Hom}(V_p, E)))$$

$$\to H^{q-l}(\Gamma^{(p)}_H, \text{Hom}(D_H, \text{distributions}))$$

Pushforward along determinant gives μ

"weakly ordinary" $\leadsto \delta$ respects integral models
"cohomologically integral" + "weakly ordinary" $\Rightarrow \mu$ measure
The map delta I

Idea: construct a map

$$\delta: \text{function space} \rightarrow V_p$$

Pullback to H yields

$$\delta^\vee: H^{q-l}(\Gamma^{(p)}, \operatorname{Hom}(D_G, \operatorname{Hom}(V_p, E)))$$
$$\rightarrow H^{q-l}(\Gamma^{(p)}_H, \operatorname{Hom}(D_H, \text{distributions}))$$

Pushforward along determinant gives μ

"weakly ordinary" $\rightsquigarrow \delta$ respects integral models
"cohomologically integral" + "weakly ordinary" $\Rightarrow \mu$ measure
The map delta I

Idea: construct a map

\[\delta: \text{function space} \rightarrow V_p \]

Pullback to \(H \) yields

\[\delta^\vee: H^{q-l}(\Gamma^{(p)}, \text{Hom}(D_G, \text{Hom}(V_p, E))) \rightarrow H^{q-l}(\Gamma^{(p)}_H, \text{Hom}(D_H, \text{distributions})) \]

Pushforward along determinant gives \(\mu \)

"weakly ordinary" \(\sim \) \(\delta \) respects integral models
"cohomologically integral" + "weakly ordinary" \(\Rightarrow \mu \) measure
The map delta I

Idea: construct a map

$$\delta: \text{function space} \rightarrow V_p$$

Pullback to H yields

$$\delta^\vee: H^{q-1}(\Gamma^{(p)}, \text{Hom}(D_G, \text{Hom}(V_p, E)))$$

$$\rightarrow H^{q-1}(\Gamma^{(p)}_H, \text{Hom}(D_H, \text{distributions}))$$

Pushforward along determinant gives μ

"weakly ordinary" $\rightsquigarrow \delta$ respects integral models
"cohomologically integral" + "weakly ordinary" $\Rightarrow \mu$ measure
The map delta II

Assumption: V_p has a stabilization, i.e., a non-trivial map

$$\Theta: \text{Ind}^{G_p}_{P_p} \pi \to V_p$$

with P (upper-triangular) parabolic with H as Levi
and π irreducible representation of H_p

Example (case GL_2): principal series have two, special
representations one, supercuspidal zero stabilizations

$$\delta: C_c(GL_n(F_p), E) \to \text{Ind}^{G_p}_{P_p} \pi$$
Main Theorem
Period integrals
P-adic interpolation

The map delta II

Assumption: \(V_p \) has a stabilization i.e. a non-trivial map

\[
\Theta: \text{Ind}_{P_p}^{G_p} \pi \rightarrow V_p
\]

with \(P \) (upper-triangular) parabolic with \(H \) as Levi and \(\pi \) irreducible representation of \(H_p \)

Example (case \(GL_2 \)): principal series have two, special representations one, supercuspidal zero stabilizations

\[
\delta: C_c(GL_n(F_p), E) \rightarrow \text{Ind}_{P_p}^{G_p} \pi
\]
The map delta II

Assumption: V_p has a stabilization i.e. a non-trivial map

$$\Theta: \text{Ind}_{P_p}^{G_p} \pi \to V_p$$

with P (upper-triangular) parabolic with H as Levi and π irreducible representation of H_p

Example (case GL_2): principal series have two, special representations one, supercuspidal zero stabilizations

$$\delta: C_c(GL_n(F_p), E) \to \text{Ind}_{P_p}^{G_p} \pi$$
The map delta II

Assumption: V_p has a stabilization i.e. a non-trivial map

$$\Theta: \text{Ind}_{P_p}^{G_p} \pi \rightarrow V_p$$

with P (upper-triangular) parabolic with H as Levi and π irreducible representation of H_p

Example (case GL_2): principal series have two, special representations one, supercuspidal zero stabilizations

$$\delta: C_c(GL_n(F_p), E) \rightarrow \text{Ind}_{P_p}^{G_p} \pi$$
The map δ II

Assumption: V_p has a stabilization i.e. a non-trivial map

$$\Theta: \text{Ind}_{P_p}^{G_p} \pi \to V_p$$

with P (upper-triangular) parabolic with H as Levi and π irreducible representation of H_p

Example (case GL_2): principal series have two, special representations one, supercuspidal zero stabilizations

$$\delta: C_c(GL_n(F_p), E) \to \text{Ind}_{P_p}^{G_p} \pi$$
The map delta II

Assumption: V_p has a stabilization i.e. a non-trivial map

$$\Theta : \text{Ind}_{P_p}^{G_p} \pi \to V_p$$

with P (upper-triangular) parabolic with H as Levi and π irreducible representation of H_p.

Example (case GL_2): principal series have two, special representations one, supercuspidal zero stabilizations.

$$\delta : C_c(GL_n(F_p), E) \to \text{Ind}_{P_p}^{G_p} \pi$$
Idea: \(\text{Ind}^{G_p}_{P_p} \pi \) is a sheaf on \(P_p \backslash G_p \)

trivialize it on open subset of open Bruhat cell:

\[
\begin{pmatrix}
g_1 & * \\
0 & g_2
\end{pmatrix} \begin{pmatrix}
0 & 1 \\
1 & 0
\end{pmatrix} \begin{pmatrix}
1 & u \\
0 & 1
\end{pmatrix}
\]

More precisely: Fix \(\rho \in \pi \) and set

\[
\delta(f) \begin{pmatrix}
g_1 & * \\
0 & g_2
\end{pmatrix} \begin{pmatrix}
0 & 1 \\
1 & 0
\end{pmatrix} \begin{pmatrix}
1 & u \\
0 & 1
\end{pmatrix} = f(u) \cdot \pi (g_1, g_2 u) \rho
\]
Idea: \(\text{Ind}_{P_P}^{G_P} \pi \) is a sheaf on \(P_P \backslash G_P \)
trivialize it on open subset of open Bruhat cell:

\[
\begin{pmatrix} g_1 & * \\ 0 & g_2 \end{pmatrix} \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix} \begin{pmatrix} 1 & u \\ 0 & 1 \end{pmatrix}
\]

More precisely: Fix \(\rho \in \pi \) and set

\[
\delta(f) \left(\begin{pmatrix} g_1 & * \\ 0 & g_2 \end{pmatrix} \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix} \begin{pmatrix} 1 & u \\ 0 & 1 \end{pmatrix} \right) = f(u) \cdot \pi (g_1, g_2 u) \rho
\]
Idea: $\text{Ind}_{P^p}^{G^p} \pi$ is a sheaf on $P^p \backslash G^p$
trivialize it on open subset of open Bruhat cell:

$$\begin{pmatrix} g_1 & * \\ 0 & g_2 \end{pmatrix} \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix} \begin{pmatrix} 1 & u \\ 0 & 1 \end{pmatrix}$$

More precisely: Fix $\rho \in \pi$ and set

$$\delta(f) \left(\begin{pmatrix} g_1 & * \\ 0 & g_2 \end{pmatrix} \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix} \begin{pmatrix} 1 & u \\ 0 & 1 \end{pmatrix} \right) = f(u) \cdot \pi(g_1, g_2 u) \rho$$
Idea: $\text{Ind}_{P_p}^{G_p} \pi$ is a sheaf on $P_p \backslash G_p$

trivialize it on open subset of open Bruhat cell:

$$\begin{pmatrix} g_1 & * \\ 0 & g_2 \end{pmatrix} \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix} \begin{pmatrix} 1 & u \\ 0 & 1 \end{pmatrix}$$

More precisely: Fix $\rho \in \pi$ and set

$$\delta(f) \left(\begin{pmatrix} g_1 & * \\ 0 & g_2 \end{pmatrix} \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix} \begin{pmatrix} 1 & u \\ 0 & 1 \end{pmatrix} \right) = f(u) \cdot \pi(g_1, g_2 u) \rho$$
The map delta III - the final page

Idea: \(\text{Ind}^{G_p}_{P_p} \pi \) is a sheaf on \(P_p \backslash G_p \)
trivialize it on open subset of open Bruhat cell:

\[
\begin{pmatrix}
g_1 & * \\
0 & g_2
\end{pmatrix}
\begin{pmatrix}
0 & 1 \\
1 & 0
\end{pmatrix}
\begin{pmatrix}
1 & u \\
0 & 1
\end{pmatrix}
\]

More precisely: Fix \(\rho \in \pi \) and set

\[
\delta(f) \left(\begin{pmatrix}
g_1 & * \\
0 & g_2
\end{pmatrix}
\begin{pmatrix}
0 & 1 \\
1 & 0
\end{pmatrix}
\begin{pmatrix}
1 & u \\
0 & 1
\end{pmatrix}
\right) = f(u) \cdot \pi(g_1, g_2u) \rho
\]