
ON SHALIKA MODELS AND P-ADIC L-FUNCTIONS

LENNART GEHRMANN

Abstract. We use modular symbols to construct p-adic L-functions for co-

homological cuspidal automorphic representations on GL(2n), which admit a
Shalika model. Our construction differs from former ones in that it systemat-

ically makes use of the representation theory of p-adic groups.
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Introduction

Modular symbols and integral formulas for special values of L-function were
first used by Mazur-Swinnerton-Dyer [MSD74] and Manin [Man73] to construct p-
adic L-functions for cuspidal elliptic eigenforms. Besides generalizing the construc-
tion to automorphic representations on GL2 over other fields than the rationals
(cf. [Man76]) there are several directions in which one can generalize the method
to higher rank groups:

One can study the p-adic behaviour of Rankin-Selberg L-functions associated
to cuspidal automorphic representations on GLn×GLn−1 as has been done most
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notably by Schmidt [Sch93], Kazhdan-Mazur-Schmidt [KMS00] and Januszewski
[Jan11], [Jan15]. In [Mah00] Mahnkopf studies the case of the standard L-function
of a cuspidal representation of GL3.

In this paper we consider the standard L-function of a cuspidal automorphic
representation V on GL2n, which admits a Shalika model, over a totally real field
F . The construction of a p-adic L-function in this setting has been carried out by
Ash-Ginzburg [AG94] under the following assumptions:

(A) The cuspidal automorphic representation is cohomological with respect to the
trivial representation.

(B) The local components Vp are spherical and ordinary for all places p above p.
(C) A certain restriction on the p-class group of F .

The main aim of this article is to relax the above assumptions. In particular, we get
rid of assumption (C) completely and work with a cuspidal representation, which is
cohomological with respect to an arbitrary algebraic representation Val. Our meth-
ods are somewhat different from the ones of Ash and Ginzburg. Whereas their
arguments are close to the classical ones, i.e. using Hecke relations to prove the dis-
tribution property and the boundedness of the distribution, we follow the strategy
of Spieß in [Spi14], which builds on work of Darmon (cf. [Dar01]). The two main
features of this construction are the following: All computations, e.g. the distribu-
tion and interpolation property, are purely local and we construct the distribution
from a cohomology class in the group cohomology of an Sp-arithmetic subgroup of
GL2n with values in (Vp ⊗ Val)

∨, where Vp is the tensor product ⊗p∈SpVp. The ex-
istence of a well-behaved lattice inside the locally algebraic representation Vp ⊗ Val

then implies the boundedness of the distribution.
The main results of the paper are:

• Definition of the distribution in Section 3.2
• Proof of an interpolation property (see Proposition 3.5)
• Proof of rationality of the distribution (see Corollary 4.11)
• Proof of integrality of the distribution (see Corollary 4.12)

Let us explain our results and their proofs in more detail:
The heart of the article is Section 2. We develop a theory of stabilizations with

respect to the standard parabolic subgroup Pn ⊂ GL2n of type (n, n) in terms of the
representation theory of p-adic groups. More precisely, a local component Vp of V
admits a stabilization Θ if it is a quotient of a parabolically induced representation
from Pn. Thus, we can view Vp as the global sections of a sheaf on the quotient
Pn(Fp)\GL2n(Fp). We use the action of the Levi subgroup of Pn to trivialize this
sheaf on an open subset inside the open Bruhat cell. This yields a map

δΘ : C0
c (GLn(Fp),C) −→ Vp.

In the main Lemma 2.11 we show that δΘ (resp. a variant of it for locally algebraic
representations) respects integral structures on both sides as long as the stabiliza-
tion Θ is weakly ordinary. This weak ordinarity condition is equivalent to the usual
ordinarity condition in the GL2-case but strictly weaker in the higher rank case.
In Section 2.3 we define a modified Euler factor E(Θ, χp, s) for every character
χp : F ∗p → C∗ by integrating χ◦det over the pullback of the local Shalika functional
by δΘ. The modified Euler factors are holomorphic multiples of the local L-factors,
i.e. we have

E(Θ, χp, s) = e(Θ, χp, s) · L(Vp ⊗ χp, s),

where e(Θ, χp, s) is an entire function. Using explicit formulas for the Shalika
functional we show that the modified Euler factors are the expected ones if Vp is a
twist of an unramified principal series representation by a character.
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In the third section we globalize our construction. Let Sp be the set of places of
F above p. Suppose we have given stabilizations Θp of Vp for all places p ∈ Sp, a
critical half integer s+ 1/2 and a finite set of finite places Σ, which is disjoint from
Sp. Then we construct a distribution µΘΣ,s on the Galois group Gp of the maximal
abelian extension of F unramified outside p and ∞ such that the interpolation
property∫

Gp
χ(γ)µΘΣ,s(dγ) =

∏
p∈Sp

e(Θp, χp, s+ 1/2)× LΣ(V ⊗ χ, s+ 1/2)

holds for all continuous characters χ : Gp → C∗.
Finally, in the last section we recast the definition of µΘΣ,s in terms of modular

symbols. As an immediate consequence we get that the distribution takes values
in a finite dimensional vector space over the field of definition E of the finite part
of V . Using results of Grobner and Raghuram on rationality of Shalika models
(cf. [GR14]) we show the following more refined result: there exist periods Ωε for
all characters ε : F ∗∞ = (F ⊗ R)∗ → {±1} such that∫

Gp
χ(γ)µΘΣ,s(dγ) ∈ E ′χΩχ∞ .

Here E ′ ⊂ C is the smallest extension of E , over which the stabilizations Θp are
defined, and E ′χ is the field you get by adjoining the image of χ. Assuming that
the stabilizations are weakly ordinary we show that the distributions µΘΣ,s are p-
adically bounded provided that the locally algebraic representation Val⊗Vp admits
a lattice L, which has a resolution by compactly induced representations of finite
type (see Definition 1.2 for a precise definition). The two main steps in proving the
boundedness are:

• Arithmetic groups are of type (VFL) (as introduced by Serre in [Ser72])
and therefore, modular symbols with values in the lattice L commute with
flat base change.

• δΘ respects integral structures.

We end the introduction by some comments on the existence of the above mentioned
lattices: By the Breuil-Schneider conjecture the representation Val ⊗ Vp should
always admit some lattice. In the GL2-case Vignéras has shown in [Vig08] that the
existence of some lattice is equivalent to the existence of a lattice, which has a good
resolution. In Section 1.3 we list known examples of locally algebraic representations
in the higher rank case, which admit good lattices. Since smooth ordinary principal
series representations admit good lattices by the work of Ollivier (cf. [Oll14]) our
construction covers all cases discussed in [AG94]. In the higher weight case the
existence of good lattices is known in special cases by results of Große-Klönne
(see [GK14]).

Acknowledgments. I am grateful to Michael Spieß for sharing his ideas on
the construction of p-adic L-functions. I thank Jan Kohlhaase, Andreas Nickel
and Vytautas Paškūnas for several helpful discussions and Felix Bergunde for a
thorough reading of an earlier draft of the article. It is a pleasure to thank all
past and current members of the Bielefeld arithmetic geometry study group for the
daily all-important coffee break. Finally, I like to thank the anonymous referee for
a detailed list of remarks, which helped to improve the exposition of the article.

Notions and Notations. We will use the following notions and notations
throughout the whole article. At the beginning of each chapter there will be an
additional set of notations which may be only valid for that given section.
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The entry in the i-th row and j-th column of a matrix A is denoted by Aij . We
denote the n× n-identity matrix by 1n.

All rings are commutative and have a unit. The group of invertible elements of
a ring R will be denoted by R∗. If M is an R-module, we denote the dual module
HomR(M,R) by M∨.

If R is a ring and G a group, we will denote the group ring of G over R by
R[G]. If G is a topological group, we write G◦ for the connected component of the
identity. Given a closed subgroup H of a locally profinite group G and an R-linear
representation M of H, the (smooth) induction IndGHM of M from H to G is the
space of all locally constant functions f : G → M such that f(hg) = hf(g) for all

h ∈ H, g ∈ G. The induction IndGHM is an R-module on which G acts R-linearly

via the right regular representation. The (smooth) compact induction c-indGHM is

the R[G]-submodule of IndGHM consisting of functions which have compact support
modulo H. Let χ : G→ R∗ be a character. We write R[χ] for the G-representation,
which underlying R-module is R itself and on which G acts via the character χ.
Given a character χ : H → R∗ we will often write IndGH χ (resp. c-indGH χ) instead

of IndGH R[χ] (resp. c-indGH R[χ]).
For a set X and a subset A ⊂ X the characteristic function 1A : X → {0, 1} is

defined by

1A(x) =

{
1 if x ∈ A,
0 else.

We fix a prime p and embeddings

C
ι∞←−↩ Q

ιp
↪−→ Cp.

We let ordp denote the valuation on Cp (and on Q via ιp) normalized such that

ordp(p) = 1. The valuation ring of Q with respect to ordp will be denoted by R.

1. Preliminaries on function and distribution spaces

The purpose of this section is twofold. Firstly, we want to fix notations. Secondly,
we want to collect results from the literature which we are going to use later.

1.1. Distributions and measures. Given two topological spaces X,Y we will
write C(X,Y ) for the space of continuous functions from X to Y . If R is a topo-
logical ring, we define Cc(X,R) ⊆ C(X,R) as the subspace of continuous functions
with compact support. If we consider Y (resp. R) with the discrete topology, we
will often write C0(X,Y ) (resp. C0

c (X,R)) instead.
Since a locally constant map with compact support takes only finitely many

different values, the canonical map

C0
c (X,Z)⊗R −→ C0

c (X,R)(1)

is an isomorphism of R-modules. For a ring R and an R-module N the R-module of
N -valued distributions on X is given by Dist(X,N) = HomZ(C0

c (X,Z), N). By (1)
every distribution µ ∈ Dist(X,N) extends uniquely to an R-linear homomorphism

C0
c (X,R) −→ N, f 7−→

∫
X

f dµ.

Suppose f : X → Y is a continuous map between compact spaces. Then the pull-
back map

C0(Y,R) −→ C0(X,R), g 7−→ g ◦ f
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induces a push forward map on distributions

f∗ : Dist(X,N) −→ Dist(Y,N).(2)

If G is a topological group and H a closed subgroup, G acts on C0(G/H,N)
(resp. C0

c (G/H,R)) via left-multiplication, i.e. (gf)(x) = f(g−1x). This in turn
induces a G-action on Dist(G/H,N) via (gD)(f) = D(g−1f). In case H is trivial,
we can extend the action of G to a G×G-action on C0(G,N) (resp. C0

c (G,R)) by
(g1, g2)f(g) = f(g−1

1 gg2).
Now, let X be a profinite topological space and E a p-adic field, i.e. E is a field

of characteristic 0 which is complete with respect to an absolute value |·| : E → R
whose restriction to Q is the usual p-adic absolute value. Until the end of this
subsection R will denote the valuation ring of E.

Let V be a finite dimensional E-vector space and L ⊂ V a lattice. The space
Distb(X , V ) of bounded distributions is defined as the image of the inclusion

Dist(X , L)⊗ E −→ Dist(X , V ).

The definition does not depend on the choice of lattice. Any bounded V -valued
distribution µ can uniquely be extended to a continuous E-linear homomorphism

C(X , E) −→ V, f 7−→
∫
X
f dµ.

We say that a C-valued distribution µ ∈ Dist(X ,C) is a p-adic measure if there
exists a Dedekind ring R ⊂ R such that the image of C0(X ,Z) under µ is contained
in a finitely generated R-submodule of C. Let Lµ,R the smallest such R-submodule

of C. In this case µ defines a bounded distribution with values in L̃µ := Lµ,R ⊗R
Cp.

1.2. Smooth representations. Let G be a locally profinite group and E a field
of characteristic 0. A G-representation on an E-vector space V is smooth if the
stabilizer of v in G is open for all v ∈ V We write Csm

E (G) for the category of
smooth G-representations on E-vector spaces.

Lemma 1.1. Let K ⊂ G be a compact, open subgroup. Then c-indGK P is a projec-
tive object in Csm

E (G) for every K-representation P ∈ Csm
E (K).

Proof. As a consequence of Frobenius reciprocity the compact induction functor
sends projective objects to projective objects. But Csm

E (K) is a semi-simple abelian
category (see for example Chapter 2.2 of [BH06]) and thus every object in Csm

E (K)
is projective. �

1.3. Lattices and integral resolutions. Let E be a field, R ⊂ E a subring and
G a locally profinite group. A G-representation on an E-vector space V is called
R-integral if there exists a locally-free G-stable R-submodule L ⊂ V such that
V = L ⊗R E. In this case we call L an R[G]-lattice in V . For example, C0

c (G,R)
is a R[G×G]-lattice in C0

c (G,E). There is also a twisted variant of this: Suppose
we have a character χ : G → E∗ and a compact, open subgroup K ⊂ G such that
χ(K) ⊂ R∗. Then, the R-module

C0
c (G,R)⊗R χ := c-indG×KK×K(C0(K,R)⊗R R[χ])(3)

defines a R[G×K]-lattice in C0
c (G,E)⊗E E[χ].

The second kind of examples we are interested in will be lattices in locally al-
gebraic representations of reductive groups over p-adic fields: Let F/Qp be a finite
extension with ring of integers OF and n ≥ 1 a fixed integer. We write Gn for the
group of F -rational points of GLn with the p-adic topology and Z ⊂ Gn for its
center. Further, we fix a finite extension E ⊂ Cp of Qp such that every embedding
F ↪→ Cp factors through E We will denote the valuation ring of E by R.
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Definition 1.2. Let V be a representation of Gn on an E-vector space. An R[Gn]-
lattice L inside V is called homologically of finite type if there exists a resolution of
finite length

0 −→ Cm −→ . . . −→ C0 −→ L −→ 0(4)

of R[Gn]-modules with the following properties: Each Ci is of the form

Ci = c-indGZK[i]
Li

with compact, open subgroups K[i] ⊂ Gn and R[ZK[i]]-modules Li, which are free
R-modules of finite rank. We say that V is homologically integral if V admits a
lattice which is homologically of finite type.

Remark 1.3. (i) The significance of the notion of homological integrality will be
made apparent in the proof of Proposition 4.9.

(ii) It is easy to see that the property of being homologically integral is preserved
under twisting by finite order characters.

An irreducible locally Qp-rational representation of Gn on an E-vector space is a
tensor product V = Vsm ⊗ Val, where Vsm ∈ Csm

E (Gn) is irreducible and Val is an
irreducible E-rational representation of the algebraic group ResF/Qp(GLn,F ). The
following proposition shows that being homologically integral is rather common.

Proposition 1.4 (Vignéras). Let V be an irreducible, locally Qp-rational repre-
sentation of G2 on an E-vector space. Then V is integral if and only if V is
homologically integral.

Proof. The locally algebraic case is the content of Proposition 0.4 of [Vig08]. The
locally Qp-rational case is proved in exactly the same way. �

Definition 1.5. Suppose that F = Qp. An irreducible algebraic representation Val

is said to have p-small weights if it fulfills the following two conditions:

• The reduction mod p of one (and thus every) R[GLn(Zp)]-lattice of Val is
absolutely irreducible.

• We have
〈
µ+ ρ, β̌

〉
≤ p for every positive root β. Here µ denotes the

highest weight of Val with respect to the Borel subgroup of upper triangular
matrices and ρ is half of the sum of all positive roots. Equivalently, if we
write µ = (µ1, . . . , µn), the above condition translates into

µi − µi−1 + 1 ≤ p
for all 1 ≤ i ≤ n− 1.

Theorem 1.6 (Große-Klönne). Let V be an irreducible, locally Qp-rational repre-
sentation of Gn on an E-vector space and assume further that

• F = Qp,
• Val has p-small weights,
• Vsm is an irreducible, unramified principal series representation,
• the central character of V takes values in Z∗p and
• the (twisted) Hecke-eigenvalues of V are integral.

Then V is homologically integral.

Proof. By the results in Section 3 of [Kat81] our situation is just a special case
of [GK14], Theorem 1.1 (iii). �

Definition 1.7. A principal series representation V ∈ Csm
E (Gn) is called ordinary

if there exists a character χ : Bn → R∗ on a Borel group Bn ⊂ Gn such that

V ∼= IndGnBn E[χ].
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Theorem 1.8 (Ollivier). Suppose V ∈ Csm
E (Gn) is an ordinary irreducible principal

series representation. Then V is homologically integral.

Proof. Given a character χ : Bn → R∗ as in the definition of ordinarity we can
consider the lattice

IndGnBn R[χ] ⊂ V.

By the work of Ollivier (cf. [Oll14]) this lattice is homologically of finite type. Note
that Ollivier only considers representations over fields in loc. cit. but her methods
carry over verbatim to our situation. �

2. Local distributions

Throughout this section let F be a finite extension of Qp, O its ring of integers
with maximal ideal p = ($) and q the cardinality of its residue field. We denote
the group of units of O by U and put U (m) = {u ∈ U | u ≡ 1 mod pm}. We denote
by ν the normalized additive valuation on F (i.e. ν($)=1) and by |x| the modulus
of x ∈ F ∗ (i.e. |$| = q−1).

Let Gr (resp. Kr) denote the group of invertible (r×r)-matrices over F (resp. O)
and let d∗g denote the Haar measure on Gr (normalized such that Kr has volume

1). We denote by K
(m)
r the principal congruence subgroup of Kr of level m, i.e. the

kernel of the reduction map from Kr to GLr(O/pm). The Borel subgroup of upper
triangular matrices in Gr will be denoted by Br. If r = 2n is even, we let Pn denote
the standard parabolic subgroup of G2n of type (n, n). Finally, we fix a character

ψ : F → Q∗ of conductor O.

2.1. The map δ. In this section we construct a map δ (depending on several
choices) from the space of locally constant functions on Gn to smooth representa-
tions of G2n which are parabolically induced from Pn. It will be used in Section
2.3 to define the local part of our global distribution. The map δ was first studied
by Spieß for n = 1 in [Spi14].

Let us fix an irreducible representations π ∈ Csm
E (Gn×Gn) over a field E of char-

acteristic 0. We can write π as a tensor product π1⊗E π2, where π1, π2 ∈ Csm
E (Gn)

are irreducible representations. They are uniquely determined up to isomorphism
by π. We consider π as a representation of Pn via the projection Pn � Gn ×Gn.

For every element ρ ∈ π we define the E-linear map

δ = δρ : C0
c (Gn, E) −→ IndG2n

Pn
π(5)

as follows: if g ∈ G2n is of the form

g =

(
g1 ∗
0 g2

)(
0 1n
1n 0

)(
1n u
0 1n

)
with g1, g2, u ∈ Gn, we put

δ(f)(g) = f(u) · π (g1, g2u) ρ

and otherwise we set δ(f)(g) = 0.

The group Gn ×Gn acts on C0
c (Gn, E) as in Section 1.1 and on IndG2n

Pn
through

the diagonal embedding of Gn ×Gn into G2n.

Lemma 2.1. Let D ⊂ Gn be the subgroup given by D = {g ∈ Gn | (g, g)ρ = ρ} .
Then δ is Gn ×D-equivariant.
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Proof. Let g =

(
g1 ∗
0 g2

)(
0 1n
1n 0

)(
1n u
0 1n

)
∈ G2n with g1, g2, u ∈ Gn and

(h1, h2) ∈ Gn ×D. For every f ∈ C0
c (Gn, E) we have((

h1 0
0 h2

)
δ(f)

)
(g) = δ(f)

((
g1 ∗
0 g2

)(
0 1n
1n 0

)(
1n u
0 1n

)(
h1 0
0 h2

))
= δ(f)

((
g1h2 ∗

0 g2h1

)(
0 1n
1n 0

)(
1n h−1

1 uh2

0 1n

))
= f(h−1

1 uh2) · π(g1h2, g2h1h
−1
1 uh2)ρ

= f(h−1
1 uh2) · π(g1, g2u)π(h2, h2)ρ

= f(h−1
1 uh2) · π(g1, g2u)ρ

= δ((h1, h2)f)(g)

and thus, the claim follows. �

Pulling back linear functionals on IndG2n

Pn
π along δ yields E-valued distributions on

Gn, i.e. given λ : IndG2n

Pn
π → E we define

µλ := λ ◦ δ ∈ Dist(Gn, E).(6)

For every element ϕ ∈ IndG2n

Pn
π we let ξλϕ : G2n → E be the function given by

ξλϕ(g) = λ(gϕ). If C is a compact, open subgroup of Gn, we put ξλC = ξλδ(1C).

Lemma 2.2. Let λ : IndG2n

Pn
π → E be a linear functional and C ⊂ Kn a compact,

open subgroup. Then for all f ∈ C0
c (Gn, E), which are C-invariant under right

multiplication, we have∫
Gn

f(g)µλ(dg) = [Kn : C]
∫
Gn

f(g) ξλC

((
g 0
0 1

))
d∗g.

Proof. It is enough to prove the formula in the case f = 1AC = (A, 1n)1C with
A ∈ Gn. In this case we have∫

Gn

f(g)µλ(dg) =

∫
Gn

(A, 1n)1C(g)µλ(dg)

= ξλC

((
A 0
0 1n

))
= [Kn : C]

∫
Gn

1C(g) ξλC

((
Ag 0
0 1n

))
d∗g

= [Kn : C]
∫
Gn

f(g) ξλC

((
g 0
0 1n

))
d∗g,

which is exactly what we claimed. �

Besides the multiplicative equivariance properties of the map δ there is an addi-
tional additive equivariance. We let Mn(F ) act on C0

c (Mn(F ), E) by

(X ? f) (g) = f(g +X)

and on IndGL2n

Pn
π via the embedding

Mn(F )→ G2n, X 7→
(

1n X
0 1n

)
.

Lemma 2.3. Let A ∈ Gn be a matrix and D ⊂ Gn a compact, open subset such
that ρ is stable under {1n} × D. Then we have

δ(X ? f) =

(
1n X
0 1n

)
δ(f).

for all f ∈ C0(AD, E) and all matrices X ∈Mn(F ) with AD +X = AD.
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Proof. It is convenient to introduce an untwisted version of the map δ. For every
ρ′ ∈ π we define the Mn(F )-equivariant map

∂ρ′ : Cc(Mn(F ), E) −→ IndGL2n

Pn
π

as follows: if g ∈ G2n is of the form

g =

(
g1 ∗
0 g2

)(
0 1n
1n 0

)(
1n u
0 1n

)
with g1, g2 ∈ Gn and u ∈Mn(F ), we put

∂ρ′(f)(g) = f(u) · π (g1, g2) ρ′

and otherwise we set ∂ρ′(f)(g) = 0.
Let f be a function in C0(AD, E). Then by assumption we have

δρ(X ? f) = ∂(1,A)ρ(X ? f)

=

(
1n X
0 1n

)
∂(1,A)ρ(f)

=

(
1n X
0 1n

)
δρ(f),

which proves the assertion. �

2.2. Weakly ordinary stabilizations. Using the map discussed in the previous
section we want to construct maps from function spaces to irreducible locally alge-
braic representations of G2n. The main aim of this section is to give a criterion on
when these maps respect integral structures.

Let E be a field of characteristic 0 and R ⊂ E a subring with field of fractions
E, which is integrally closed in E. We are mostly interested in the case that p is
not invertible in R.

Definition 2.4. Let V ∈ Csm
E (G2n) be an irreducible representation.

(i) A stabilization Θ = (π, ρ, ϑ) of V consists of
• an irreducible representation π ∈ Csm

E (Gn ×Gn),
• a non-zero element ρ ∈ π and
• a non-zero G-equivariant homomorphism ϑ : IndG2n

Pn
π → V .

(ii) Let Θ = (π, ρ, ϑ) be a stabilization of V . Write π as a tensor product π1 ⊗ π2

of irreducible representations π1, π2 ∈ Csm
E (Gn). We put α := αΘ := ω2($),

where ω2 denotes the central character of π2. The stabilization Θ is called
R-integral if α−1 ∈ R.

Remark 2.5. (i) The exact value of α does depend on the choice of uniformizer $
if ω2 is ramified. But changing the uniformizer changes α only by a root of
unity. Hence, the integrality condition for stabilizations is independent of the
choice of uniformizer.

(ii) If n = 1, the existence of a stabilization is equivalent to V not being supercus-
pidal.

Example 2.6. (i) Our guiding example will be the case of unramified principal
series representations. Let χ1, . . . , χr : F ∗ → E∗ be unramified characters.
They induce a character

χ : Br −→ E∗ via b 7−→
r∏
i=1

χi(bii).

We will write IndGrBr (χ1, . . . , χr) for the smooth representation IndGrBr χ. Now,

assume that r = 2n and that V = IndG2n

B2n
(χ1, . . . , χ2n) is irreducible. We will

call Θur = (πur, ρur, ϑur) with
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• πur = IndGnBn (χ1, . . . , χn)⊗ IndGnBn (χn+1, . . . , χ2n)
• ρur the unique normalized Kn ×Kn-fixed vector in π
• ϑur the canonical isomorphism

the unramified stabilization of V with respect to (χ1 . . . χ2n). The unrami-

fied stabilization is integral if α−1 =
∏2n
i=n+1 χi($)−1 ∈ R. Note that we

get different models of V and hence different unramified stabilizations by re-
ordering (and normalizing) the characters χi. This amounts to

(
2n
n

)
different

unramified stabilizations for each irreducible unramified principal series rep-
resentation. Each of these stabilizations is defined over a finite extension of
the field of definition of V , which can be made explicit in terms of Hecke
eigenvalues.

(ii) For r ≥ 1 let Str denote the Steinberg representation of Gr. Then St2n has a
canonical stabilization of the form ΘSt = (Stn⊗Stn, ρ⊗ ρ, ϑ), where ρ ∈ Stn
is the normalized Iwahori-fixed vector. The Steinberg stabilization is defined
over Q and is Z-integral since α = 1.

(iii) Assume we have given an irreducible representation V ∈ CE(G2n) together
with a stabilization Θ = (π, ρ, ϑ). Let χ : F ∗ → E∗ be a continuous finite
order character. After choosing a non-zero element e ∈ E[χ], we can define
the twisted stabilization Θ⊗χ = (π⊗χ, ρ⊗e, ϑχ)) of V ⊗χ, where ϑχ is given
by the composition

IndG2n

Pn
π ⊗ χ

∼=−→ IndG2n

Pn
π ⊗ χ ϑ⊗id−−−→ V ⊗ χ.

The twisted stabilization Θ ⊗ χ is weakly ordinary if and only if Θ is weakly
ordinary.

Given a stabilization Θ = (π, ρ, ϑ) of V we can precompose ϑ with the map δρ of
the previous section to obtain

δΘ = ϑ ◦ δρ : C0
c (Gn, E) −→ V.

The following lemma explains the notion of integrality of stabilizations. It (resp. its
locally algebraic counterpart below) is one of the main ingredients to prove that
the distributions we construct in Section 3 are bounded.

Lemma 2.7. Let V ∈ Csm
E (G2n) be irreducible and R-integral and let L ⊂ V be a

G2n-stable lattice. If Θ = (π, ρ, ϑ) is an R-integral stabilization of V , then there
exists a non-zero constant c ∈ E∗ such that

c · δΘ : C0
c (Gn, R) −→ L ⊂ V.

Proof. In fact, we prove a stronger statement: Let Q ⊂ G2n be the subgroup

Q =

{(
g u
0 1n

)
∈ G2n | g ∈ Gn, u ∈Mn(F )

}
and let m ≥ 1 be a natural number such that {1n} ×K(m)

n is in the stabilizer of
ρ. Then the image of C0

c (Gn, R) under δ = δρ is contained in the R[Q]-module
generated by δ(1

K
(m)
n

).

For this let A ∈ Q be the matrix given by

A =

(
$1n ($ − 1)1n

0 1n

)
.

It is the product of the two matrices

A0 =

(
1n ($ − 1)1n
0 1n

)
and A1 =

(
$1n 0

0 1n

)
.
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In the following, we will abbreviate a scalar matrix with a ∈ F on its diagonal
simply by a. Using Lemma 2.1 we get

Aδ(1
K

(r)
n

)(g) = A0A1δ(1K(r)
n

)(g)

= A0δ(A11K
(r)
n

)(g)

= A0δ(1$K(r)
n

)(g)

= 1
$K

(r)
n

(u+$ − 1) · π(g1, g2(u+$ − 1))ρ

= 1
$K

(r)
n

(u+$ − 1) · α · π(g1, g2)ρ

= α · 1
K

(r+1)
n

(u) · π(g1, g2)ρ

= α · 1
K

(r+1)
n

(u) · π(g1, g2u)ρ

= α · δ(1
K

(r+1)
n

)(g)

for all r ≥ m and g =

(
g1 ∗
0 g2

)(
0 1n
1n 0

)(
1n u
0 1n

)
∈ G2n with gi, u ∈ Gn.

Therefore, the claim follows by induction. �

In the remainder of this subsection we want to discuss locally algebraic versions
of the previous results. In particular, E ⊂ Cp will be a finite extension of Qp with
valuation ring R. We assume that every embedding σ : F → Cp factors through
E. Let Z[Hom(F,E)] be the free abelian group on the set of field homomorphisms
from F to E. We identify

a =
∑

aσσ ∈ Z[Hom(F,E)]

with the group homomorphism

a : F ∗ → E∗, x 7→
∏
σ

σ(x)aσ .

Given a =
∑
aσσ and b =

∑
bσσ we write a ≤ b if and only if aσ ≤ bσ for all σ.

Further, we fix an irreducible smooth representation Vsm ∈ Csm
E (G2n) and an

irreducible, finite-dimensional Qp-rational representation Val of GL2n,F on a fi-
nite dimensional E-vector space. By definition there exist irreducible E-rational
representations Vσ of GL2n,E for all embeddings σ : F → E and a G-equivariant
isomorphism

Val
∼=

⊗
σ : F→E

Vσ.

Here G acts on Vσ through the embedding σ : F → E. We will denote the highest
weight of Vσ with respect to the Borel subgroup of upper triangular matrices by
µσ = (µσ,1, . . . , µσ,2n). We set eσ = µσ,1 + . . .+ µσ,n and define

eal =
∑

σ∈Hom(F,E)

eσσ.

Definition 2.8. Let V = Vsm ⊗ Val be as above.

(i) A stabilization Θ of V is just a stabilization of its smooth part Vsm.
(ii) We say that a stabilization Θ of V is weakly ordinary (with respect to Val) if

α−1
Θ eal($)−1 ∈ R.

(iii) A critical point Vs of V is a one-dimensional Gn × Gn-subrepresentation of
Val.

Remark 2.9. (i) The notion of weak ordinarity can be seen as an automorphic
version of Panchishkin’s p-ordinarity condition of motives (see Section 5 of
[Pan94]).
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(ii) Every irreducible unramified principal series representation, which is ordinary
in the sense of Definition 1.7, has a weakly ordinary stabilization.

(iii) On the notion of critical points: We will see in Section 4.2 that critical points
of L-functions of global automorphic representations correspond to certain
one-dimensional subrepresentations of Val.

Given a stabilization Θ and a critical point Vs ⊂ Val of V we define

δΘ,s : C0
c (Gn, E)⊗ Vs

δϑ⊗id−−−−→ Vsm ⊗ Vs ↪→ V.

As an immediate consequence of Lemma 2.1 we get

Lemma 2.10. The map δΘ,s is Gn × D-equivariant, where D ⊂ Gn is the open
subgroup given by D = {g ∈ Gn | (g, g)ρ = ρ}.

There is also a version of the integrality Lemma 2.7 in this setup. Let χs be the
character of the one-dimensional Gn × Gn-representation Vs. After choosing an
isomorphism E[χs] ∼= Vs we can consider the lattice

C0
c (G,R)⊗R χs ⊂ C0

c (Gn, E)⊗ Vs
as defined in (3).

Lemma 2.11. Suppose V is R-integral and let L ⊂ V be a G2n-lattice. If Θ is a
weakly ordinary stabilization of V and Vs is a critical point of V , then there exists
a non-zero constant c ∈ E∗ such that

c · δΘ,s : C0
c (Gn, R)⊗R χΘ → L ⊂ V.

Proof. Let u ∈ G2n be the matrix

u =

(
1n −1n
0 1n

)
and ν : Gm → GL2n the cocharacter which sends t ∈ Gm to the diagonal matrix ν(t)
with ν(t)ii = t if 1 ≤ i ≤ n and ν(t)ii = 1 if n + 1 ≤ i ≤ 2n. We put ν′ = uνu−1.
Then the matrix A we considered in the proof of Lemma 2.7 is nothing but ν′($).
We can view Val as a ResF/Qp(Gm,F )-representation via µ′ and hence, it has a
weight space decomposition, i.e. there exists a basis (v1, . . . , vk) of Val and elements
e1, . . . , ek ∈ Z[Hom(F,E)] such that

Avl = el($)vl ∀1 ≤ l ≤ k.
From the proof of Lemma 2.7 we see that there exists an integer m ≥ 1 such that

δΘ(1
K

(r+1)
n

)⊗ vl = α−1
Θ el($)−1 ·A

(
δΘ(1

K
(r)
n

)⊗ vl
)

for r ≥ m and all 1 ≤ l ≤ k. After multiplication with a non-zero constant we
might assume that δΘ(1

K
(m)
n

) ⊗ vl ∈ L for all 1 ≤ l ≤ k. By definition we have

el ≤ eal for all 1 ≤ l ≤ k. Thus, by the ordinarity assumption on Θ we inductively
get

δΘ(1
K

(r+1)
n

)⊗ vl ∈ L
for all r ≥ m. Multiplying the vi with appropriate non-zero constants we can
assume that R[χs] ⊂ Vs is a submodule of the R-span of v1, . . . , vk and the claim
follows. �

For the sake of clarity let us work out the conditions of the preceding lemma in
the case F = Qp, n = 1, Val = Symk(Q2

p)
∨ and Vsm = IndG2

B2
(χ1, χ2) an irreducible

principal series representation. We set α = χ2(p) and α′ = χ1(p). The highest
weight of Val is given by µ = (0,−k). The existence of a lattice in V = Vsm ⊗ Val

implies that
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(i) αα′p−k ∈ R∗,
(ii) α ∈ R and pα′ ∈ R.

The associated unramified stabilization is ordinary if and only if α−1 ∈ R. So the
weak ordinarity hypothesis together with the existence of a lattice implies that α
is a unit in R. Vice versa, it is easy to see that the representation V has a lattice
if α ∈ R∗ and condition (i) holds.

2.3. Local Shalika models and local distributions. The Shalika subgroup S
of G2n is given by

S =

{(
h 0
0 h

)(
1n X
0 1n

)∣∣∣∣h ∈ Gn, X ∈Mn(F )

}
.

We fix a locally constant character η : F ∗ → C∗. It induces a character ηψ : S → C∗
via (

h 0
0 h

)(
1n X
0 1n

)
7→ η(det(h))ψ(tr(X)).

Definition 2.12. An irreducible representation V ∈ Csm
C (G2n) has a (local) (η, ψ)-

Shalika model if there exists a non-zero functional λ : V → C such that

λ(sϕ) = ηψ(s)λ(ϕ) ∀s ∈ S, ϕ ∈ π.

The functional λ is called a (local) (η, ψ)-Shalika functional.

Remark 2.13. (i) Suppose V has an (η, ψ)-Shalika functional λ. Let χ : F ∗ → C∗
be a locally constant character and e ∈ C[χ] a non-zero element. Then

λχ : V ⊗ C[χ]→ C, v ⊗ e 7→ λ(v)

defines a (ηχ2, ψ)-Shalika functional on V ⊗ χ.
(ii) If η is the trivial character, Jacquet and Rallis have shown in [JR96] that

Shalika functionals are - if they exist - unique up to multiplication by a con-
stant. An elementary proof of this fact can be found in [Nie09]. Using the first
remark one gets the uniqueness of (η, ψ)-Shalika functionals if η is a square.

(iii) If η is a finite order character, Ash and Ginzburg have proven the uniqueness
of Shalika functionals for unramified, irreducible principal series representa-
tions under a technical condition on the induction parameter (see Lemma 1.7
of [AG94]).

In view of the above remarks we make the following

Assumption 1. We assume that local Shalika functionals are - if they exist -
unique up to multiplication by a non-zero scalar.

Suppose we have given a stabilization Θ = (π, ρ, ϑ) of an irreducible representation
V ∈ Csm

C (G2n), which has a Shalika functional λ. Let µΘ := µλ◦ϑ ∈ Dist(Gn,C) be
the distribution defined in (6).

Lemma 2.14. Assume that V is generic and that there exists t ∈ C such that
V ⊗ |det|t is unitary. For every continuous character χ : F ∗ → C∗ the integral

E(Θ, χ, s) :=

∫
Gn

χ(det(g)) |det(g)|s−1/2
dµΘ(g)(7)

converges absolutely for Re(s) large. There is a factorization

E(Θ, χ, s) = e(Θ, χ, s) · L(V ⊗ χ, s),(8)

where e(Θ, χ, s) is an entire function. Hence, E(Θ, χ, s) can be extended to a mero-
morphic function on C.
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Proof. Let C ⊆ Kn be an open subgroup, which is contained in the kernel of χ◦det.
By Lemma 2.2 we have the following equality:

E(Θ, χ, s) = [Kn : C]
∫
Gn

χ(det(g)) |det(g)|s−1/2
ξλ◦ϑC

((
g 0
0 1n

))
d∗g

The function ξλ◦ϑC is an element of the Shalika model of V . Hence, the claim follows
from [FJ93] Proposition 3.1. �

Remark 2.15. In the case n = 1, the vector ρ of the stabilization Θ is determined
uniquely up to a constant and therefore, the modified Euler factor essentially does
not depend on ρ. If n > 1, there are different choices of ρ yielding a priori different
modified Euler factors.

The modified Euler factors E(Θ, χ, s) behave well under twisting. Using Remark
2.13 (i) a straightforward calculation gives

Lemma 2.16. Let χ′ : F ∗ → C∗ be a continuous character. Then the equality

E(Θ⊗ χ′, χ, s) = E(Θ, χ′χ, s)

holds.

Let us take a closer look at the spherical example: Fix unramified characters
χ1, . . . , χ2n such that V = IndG2n

B2n
(χ1, . . . , χ2n) is irreducible and has a unitary

twist. Assume that V has a (η, ψ)-Shalika model. Then by Proposition 1.3 of
[AG94] we know that η is unramified and we may assume that χi = ηχ−1

2n−i+1 (which
we will do in the following). Conversely every such unramified principal series
representation has a Shalika model. More precisely: Write βi = χi($)qn−i+1/2 =
αiq

n−i+1/2 for the Satake parameters of V and let |·|∞ be the standard norm on
C. If we assume that |βiβj |∞ < 1 for all 1 ≤ i < j ≤ n, then by [AG94], Lemma
1.4, the following absolutely convergent integral gives the Shalika functional:

λ(ϕ) =

∫
Kn

∫
Mn(F )

ϕ

((
0 1n
1n 0

)(
g 0
0 g

)(
1n X
0 1n

))
η−1(det(g))ψ−1(tr(X)) dXd∗g.

Here dX denotes an additive Haar measure on Mn(F ). If βiβj 6= η±1($) for all
1 ≤ i < j ≤ n, then the Shalika functional can be defined via analytic continuation
of the above integral (see the proof of [AG94], Proposition 1.3).

Let Θur = (πur, ρur, ϑur) be the unramified stabilization of V with respect to

(χ1, . . . χ2n). We can write ρur = ρ1 ⊗ ρ2, where ρ1 ∈ IndGnBn (χ1, . . . , χn) and

ρ2 ∈ IndGnBn (χn+1, . . . , χ2n) are normalized such that ρi(k) = 1 for i = 1, 2 and all
k ∈ Kn.

Proposition 2.17. Let V = IndG2n

B2n
(χ1, . . . , χ2n) be an irreducible unramified prin-

cipal series as above with Shalika functional λ. Assume that βiβj 6= η±1($) for all
1 ≤ i < j ≤ n. Then we have∫

Gn

f(g)µΘur(dg) =

∫
Mn(F )

1Gn(X)ρ2(X)f(X)ψ−1(tr(X)) dX(9)

for all f ∈ C0
c (Gn,C) which are invariant under conjugation by Kn.

As a special case we get: For every continuous character χ : F ∗ → C∗ we have

E(Θur, χ, s) =

∫
Mn(F )

1Gn(X)ρ2(X)χ(det(X)) |det(X)|s−1/2
ψ−1(tr(X)) dX

(10)

for Re(s) large.
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Proof. For every s ∈ C we define

V s = IndGnBn (χ1 |·|s , . . . , χ2n |·|s)
and let

ρs1 ∈ IndGnBn (χ1 |·|s , . . . , χn |·|s) resp. ρs2 ∈ IndGnBn (χn+1 |·|−s , . . . , χ2n |·|−s)
be the normalized spherical vectors, i.e. ρsi (k) = 1 for all k ∈ Kn, i = 1, 2. We write
δs for the corresponding maps

δs : C0
c (Gn,C)→ IndG2n

B2n
(χ1 |·|s , . . . , χn |·|s , χn+1 |·|−s , . . . , χ2n |·|−s) =: πs

and λs for the Shalika functional of V s. Since the map s 7→ λs(δs(f)) is analytic
we can compute the left hand side of (9) as the analytic continuation to s = 0 of
the integral∫

Kn

∫
Mn(F )

δs(f)

((
0 1n
1n 0

)(
g 0
0 g

)(
1n X
0 1n

))
η−1(det(g))ψ−1(tr(X)) dXd∗g

=

∫
Kn

∫
Gn

ρs1(g)ρs2(gX)f(X)η−1(det(g))ψ−1(tr(X)) dXd∗g

=

∫
Kn

∫
Gn

ρs1(g)ρs2(Xg)f(g−1Xg)η−1(det(g))ψ−1(tr(g−1Xg)) dXd∗g

=

∫
Gn

ρ2(X) |det(X)|−s f(x)ψ−1(tr(X)) dX.

The claim follows since f has compact support inside Gn. �

2.4. Computation of modified Euler factors. We are going to evaluate the
Euler factors E(Θur, χ, s) of Proposition 2.17. Using the Iwasawa decomposition
we can reduce the integral over Gn to sums of integrals over explicit compact open
subsets of Gn. Most of these integrals vanish by orthogonality of characters applied
either to the fixed additive character ψ or the multiplicative character χ.

A fair amount of the computations work in a more general setup: We fix an
irreducible representation V ∈ CC(G2n), which admits a Shalika functional λ and a

stabilization Θ = (π, ρ, ϑ). Let I
(r)
n ⊂ Kn denote the Iwahori subgroup of Level pr,

i.e. the set of all matrices in Kn, which are upper triangular modulo pr and write

Ĩ
(m)
n ⊂ I

(m)
n for the subgroup of matrices which are unipotent upper triangular

modulo pm. We assume that ρ is stabilized by the group {1n}× I(1)
n . In particular,

αΘ is independent of the choice of a local uniformizer. We are going to use the
following two properties:

(I) K
(m)
n ⊂ I(1)

n for all m ≥ 1 and

(II) det : I
(1)
n → U is surjective.

Definition 2.18. The order ord(A) of a matrix A ∈ Mn(F ) is the minimum of
the ν(Aij), 1 ≤ i, j ≤ n.

It is a straightforward calculation to show that

ord(AB) ≥ ord(A) + ord(B)

for all A,B ∈Mn(F ). In particular, we get an equality if one of the matrices is in
Kn.

Lemma 2.19. Let A ∈ Gn be a matrix and m ∈ Z an integer with 1 ≤ m <
− ord(A). We have the following equality:∫

Gn

1
AK

(m)
n

dµΘ = 0.
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Proof. Choose k, l ∈ {1, . . . , n} such that ord(A) = ν(Akl). By assumption, there
exists b ∈ F ∗ with ν(b) = −ν(Akl) − 1 and ψ(Aklb) 6= 1. Define the matrix
B ∈ $mMn(O) via

Bij =

{
b if i = l, j = k,

0 else.

The indicator function on the set AK
(m)
n is clearly invariant under addition by

matrices in A$mMn(O). Hence, by Lemma 2.3 and property (I) we get∫
Gn

1AKm
n
dµΘ = λ(δΘ(1

AK
(m)
n

))

= λ(δΘ(AB ? 1
AK

(m)
n

))

= λ

((
1n AB
0 1n

)
δΘ(1

AK
(m)
n

)

)
= ψ(tr(AB))λ(δΘ(1

AK
(m)
n

))

= ψ(Aklb)

∫
Gn

1
AK

(m)
n

dµΘ.

Since ψ(tr(Aklb)) 6= 1 the claim follows. �

Corollary 2.20. Let χ : F ∗ → C∗ be a character of conductor f(χ) = pm with
m ≥ 0 and let A ∈ Gn with ord(A) < −max(m, 1). Then we have∫

Gn

(χ ◦ det) · 1AKn dµΘ = 0.

Proof. Let m′ = max(m, 1). We can rewrite the integral as∫
Gn

(χ ◦ det) · 1AKn dµΘ =
∑

k∈Kn/K(m′)
n

χ(det(Ak))

∫
Gn

1
AkK

(m′)
n

dµΘ.

Using the fact that ord(Ak) = ord(A) for all k ∈ Kn the claim follows from Lemma
2.19. �

Lemma 2.21. Let χ : F ∗ → C∗ be a character of conductor f(χ) = pm with m ≥ 1
and let A ∈ Gn be a matrix with ord(A) > −m. We have the following equality:∫

Gn

(χ ◦ det) · 1AKn dµΘ = 0.

Proof. Firstly, let us assume we are in the case m ≥ 2. We are going to prove the
stronger statement: ∫

Gn

(χ ◦ det) · 1
AK

(m−1)
n

dµΘ = 0.

We have AB ∈ Mn(O) for every B ∈ $m−1Mn(O). Therefore, using Lemma 2.3
and property (I) we have∫

Gn

(χ ◦ det) · 1
AK

((m−1)
n

dµΘ = λ
(
δρ((χ ◦ det) · 1

AK
(m−1)
n

)
)

= λ

((
1n AB
0 1n

)
δρ((χ ◦ det) · 1

AK
(m−1)
n

)

)
= λ

(
δρ

(
AB ?

(
(χ ◦ det) · 1

AK
(m−1)
n

)))
.
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Taking the average over all B ∈ $m−1Mn(O) yields∫
$m−1Mn(O)

(
AB ?

(
(χ ◦ det) · 1

AK
(m−1)
n

))
(Ak) dB

=

∫
$m−1Mn(O)

χ(det(Ak +AB)) dB

=χ(det(Ak))

∫
$m−1Mn(O)

χ(det(1n + k−1B)) dB

=χ(det(Ak))

∫
$m−1Mn(O)

χ(det(1n +B)) dB

=χ(det(Ak))

∫
K

(m−1)
n

χ(det(k′)) dk′

for every k ∈ K
(m−1)
n . Since det : K

(m−1)
n → U (m−1) is surjective, the character

χ ◦det : K
(m−1)
n → C∗ is non-trivial. Hence, by orthogonality of characters the last

integral vanishes.
The case m = 1 can be proven in the same manner using property (II). �

Definition 2.22. Let χ : F ∗ → C∗ be a quasicharacter of conductor f(χ) = pm with
m ≥ 0 and a ∈ F ∗ with ν(a) = −m We define the Gauss sum of χ (with respect to
ψ) as

τ(χ) := τ(χ, ψ) := [U : U (m)]

∫
U

χ(ag)ψ(ag)d∗g.

For r = (r1, . . . , rn) ∈ Zn we let Tr ∈ Gn be the diagonal matrix given by (Tr)ii =
$ri for 1 ≤ i ≤ n.

Lemma 2.23. Let χ : F ∗ → C∗ be a character of conductor f(χ) = pm with m ≥ 1
and r = (r1, . . . , rn) ∈ Zn. If ri = −m for all 1 ≤ i ≤ n, we have∫

Gn

χ · 1
TrI

(m)
n

dµΘ = τ(χ)n
(
α q(n−n2)/2

)−m
q
n2+n

2 λ(ϑ(∂ρ(1Ĩ(1)
n

)))

and otherwise we have ∫
Gn

χ · 1
TrI

(m)
n

dµΘ = 0.

Proof. In the following we will identify elements ε = (ε1, . . . , εn) ∈ (U/U (m))n with
the corresponding diagonal matrices in GLn(O/pm) (resp. with representatives in
Kn). We have∫

Gn

χ · 1
TrI

(m)
n

dµΘ =
∑

ε∈(U/U(m))n

∫
Gn

χ · 1
TrεĨ

(m)
n

dµΘ

=
∑

ε∈(U/U(m))n

n∏
i=1

χ($riεi)

∫
Gn

1
TrεĨ

(m)
n

dµΘ.

Applying (2.3) with the matrix Tr(ε− 1n) yields∫
Gn

χ · 1
TrI

(m)
n

dµΘ =
∑

ε∈(U/U(m))n

n∏
i=1

χ($riεi)ψ($ri(εi − 1))

∫
Gn

1
Tr Ĩ

(m)
n

dµΘ

=

n∏
i=1

ψ(−$ri)
∑

εi∈U/U(m)

χ($riεi)ψ($riεi)

∫
Gn

1
Tr Ĩ

(m)
n

dµΘ.

Lemma 2.21 in the case n = 1 implies that the sum
∑
εi∈U/U(m) χ($riεi)ψ($riεi)

vanishes unless ri = −m for all i.
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So let us assume for the rest of the proof that ri = −m for all i. By the definition
of the Gauss sum we get∫

Gn

χ · 1
TrI

(m)
n

dµΘ = τ(χ)nψ(−$−m)n
∫
Gn

1
Tr Ĩ

(m)
n

dµΘ.

The invariance property of Shalika functionals implies that the distribution

λ ◦ ϑ ◦ ∂ρ′ : Cc(Mn(F ),C) −→ C

is a multiple of the distribution ψ · dX for every ρ′ ∈ π. Thus, the transformation
law of dX under linear transformations gives

ψ(1−$−m)n
∫
Gn

1
Tr Ĩ

(m)
n

dµΘ = ψ($−m)nλ(ϑ(δρ(1Tr Ĩ(m)
n

)))

= ψ($−m)nλ(ϑ(∂(1,Tr)ρ(1Tr Ĩ(m)
n

)))

= α−mψ($−m)nλ(ϑ(∂ρ(1Tr Ĩ(m)
n

)))

= α−mqmn
2

λ(ϑ(∂ρ(1Ĩ(m)
n

)))

= α−mqmn
2

[Ĩ(1)
n : Ĩ(m)

n ]−1λ(ϑ(∂ρ(1Ĩ(1)
n

)))

and therefore, we can conclude that∫
Gn

χ · 1
TrI

(m)
n

dµΘ = α−mqmn
2

[Ĩ(1)
n : Ĩ(m)

n ]−1λ(ϑ(∂ρ(1Ĩ(1)
n

)))

= τ(χ)n
(
α q(n−n2)/2

)−m
q
n2+n

2 λ(ϑ(∂ρ(1Ĩ(1)
n

))).

�

Now let us get back to the situation of Proposition 2.17. In particular, we
have fixed the unramified stabilization Θur = (πur, ρur, ϑur) associated to the un-

ramified irreducible principal series representation V = IndG2n

B2n
(χ1, . . . , χ2n) with

χi = ηχ−1
2n−i+1 for all 1 ≤ i ≤ n. Hence we know that

α = αΘur =

2n∏
i=n+1

χi($).

As before, we write βi = χi($)qn−i+1/2 = αiq
n−i+1/2 for the Satake parameters of

V .

Theorem 2.24. Let χ : F ∗ → C∗ be a character of conductor f(χ) = pm. If the
complex norm |χ($)|∞ is sufficiently small, we have

E(Θur, χ, 1/2) = c τ(χ)n ×


(
α q(n−n2)/2

)−m
if m ≥ 1,∏n

i=1

1−β−1
n+iχ($)−1q−1/2

1−βn+iχ($)q−1/2 if m = 0,

where c is a non-zero rational constant independent of χ.

Proof. We first treat the case m ≥ 1. By Corollary 2.20 and Proposition 2.17 we
have

E(Θur, χ, 1/2) =

∫
Gn

χ dµΘur =

∫
Fm

χ dµΘur

=

∫
Fm

ρ(X)χ(det(X))ψ−1(tr(X)) dX

=
∑

A∈Fm/Kn

∫
AKn

ρ(X)χ(X)ψ−1(tr(X)) dX,

(11)
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where Fm ⊂ Gn is the set of matrices A with ord(A) ≥ −m. By the Iwasawa decom-
position every coset AKn ∈ Fm/Kn has a representative of the form Tr(AKn) +N

with r(A) ∈ Zn and N a nilpotent upper triangular matrix with entries in p−m.
The diagonal matrix Tr(AKn) is uniquely determined by the coset AKn. For a fixed
r ∈ Zn we define

Fmr = {A ∈ Fm | r(AKn) = r} .
A complete set of representatives of Fmr /Kn is given by {Tr +N}, where N are
nilpotent upper triangular matrices with entries Nij running through a set of rep-
resentatives of p−m/pri for all j > i. If we let the Nij run through a set of rep-

resentatives of p−m/pri+m instead, we get exactly qm(n2−n)/2 representatives for
each equivalence class in Fmr . Therefore, we get∑

A∈Fmr /Kn

∫
Kn

χ(det(Ag))ψ(tr(Ag))d∗g

=
1

qm(n2−n)/2

∑
N

∫
Kn

χ(det(Trg))ψ(tr(Trg))ψ(tr(Ng))d∗g

=
1

qm(n2−n)/2

∫
Kn

χ(det(Trg))ψ(tr(Trg))
∑
N

ψ(tr(Ng))d∗g.

By orthogonality of characters the sum∑
N

ψ(tr(Ng)) =
∑

Nij∈p−m/pri+m

∏
j>i

ψ(Nijgji)

=
∏
j>i

∑
Nij∈p−m/pri+m

ψ(Nijgji)

is zero unless ν(gji) ≥ m for all j > i. Therefore, using the proof of Lemma 2.23
most of the terms in (11) vanish and we are left with

E(Θur, χ, 1/2) =

∫
Gn

χ · 1T(−m,...,−m)
I(m)
n dµΘ.

The claim now follows by using Lemma 2.23 once again.
Now let χ be unramified. Corollary 2.20 and Proposition 2.17 give

E(Θur, χ, 1/2) =

∫
F1

χ dµΘur =

∫ 1

F
ρ(X)χ(det(X))ψ−1(tr(X)) dX

Invoking the Iwasawa decomposition and the comparison between multiplicative
and additive Haar measures we get

E(Θur, χ, 1/2) = lim
k→∞

∑
(ri)∈Zn
−1≤ri≤k

n∏
i=1

q−rinαrin+iχ($ri)
∑
A∈F1

r

∫
Kn

ψ(tr(Ag)) d∗g.

As in the case m ≥ 1 we see that∑
A∈F1

r

∫
Kn

ψ(tr(Ag)) d∗g =

n∏
i=1

q(1+ri)(n−i)
∫
I

(1)
n

ψ(tr(Trg)) d∗g.

The integral on the right hand side of the equality is equal to vol(I
(1)
n ) if ri ≥ 0 for

all 1 ≤ i ≤ n. Otherwise a computation with diagonal matrices like before shows
that ∫

I
(1)
n

ψ(tr(Trg) d∗g = vol(I(1)
n )

n∏
i=1
ri=−1

(
− 1

q − 1

)
.
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Therefore, we get that

E(Θur, χ, 1/2) = vol(I(1)
n )

n∏
i=1

− 1

q − 1
α−1
n+iχ($)−1qn + qn−i

∞∑
k=0

(αn+iχ($)q−i)k

= vol(I(1)
n )

n∏
i=1

− 1

q − 1
α−1
n+iχ($)−1qn + qn−i

1

1− αn+iχ($)q−i

= vol(I(1)
n )

n∏
i=1

qn−i+1

q − 1

1− α−1
n+iχ($)−1qi−1

1− αn+iχ($)q−i

= vol(I(1)
n )[U : U (1)]−nq

n2+n
2

n∏
i=1

1− β−1
n+iχ($)−1q−1/2

1− βn+iχ($)q−1/2
.

The constants appearing in the all cases are equal, which proves the claim. �

2.5. The semi-local case. All the previous constructions can be easily generalized
to the semi-local case. We change our notations slightly. Let F1, . . . , Fg be finite
extensions of Qp. We put F = F1 × . . .× Fg and O = OF1

× . . .×OFg . For every
r ∈ N we define Gr = GLr(F ) and Kr = GLr(O).

Further, we fix a subfield E ⊂ Cp which is a finite extension of Qp such that
every embedding of every Fi into Cp factors through E for all 1 ≤ i ≤ g (or, an
arbitrary field E of characteristic 0 in the smooth case).

Definition 2.25. Let Vi be irreducible locally Qp-rational GL2n(Fi)-representations
on E-vector spaces for every 1 ≤ i ≤ g.

(i) A stabilization Θ of the G2n-representation

V =

g⊗
i=1

Vi

is a tuple Θ = (Θi)1≤i≤g, where Θi is a stabilization of Vi for 1 ≤ i ≤ g.
(ii) A stabilization Θ of V is weakly ordinary if each of the Θi is weakly ordinary.

(iii) A critical point Vs of V is a tensor product of the form

Vs =

g⊗
i=1

Vs,i,

where Vs,i is a critical point of Vi for all 1 ≤ i ≤ g.

The map given by

r⊗
i=1

C0
c (GLn(Fk), E) −→ C0

c (Gn, E),

f1 ⊗ . . .⊗ fg 7−→ [(g1, . . . , gn) 7→ f1(g1) · . . . · fn(gn)]

gives an isomorphism of Gn × Gn-representations. Therefore, every data of a sta-
bilization Θ and a critical point Vs of a representation V gives rise to a map

δΘ,s : C0
c (Gn, E)⊗ Vs 7−→ V.(12)

If Vi is smooth for all 1 ≤ i ≤ g, then Vs is automatically trivial. All the local
results from Section 2.2 carry over verbatim to the semi-local case.

Suppose we are in the smooth case. Let KΘ = KΘ,1 × · · · ×KΘ,g ⊂ Kn be the
maximal open subgroup such that δΘ is 1×KΘ-equivariant. For an arbitrary ring
R, which contains the central character ω of Vsm, and an R-module N we define

IC0
ω(Kn, R) = c-indGn×GnZ(Kn×KΘ) ω ⊗ C

0
c (Kn, R)
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and

IDist(Kn, N) = c-indGn×GnZ(Kn×KΘ) ω
−1 ⊗Dist(Kn, N).

where Z is center of G2n, which we view as a subgroup of Gn×Gn via the diagonal
embedding. By Frobenius reciprocity the map δΘ induces a map

IC0
ω(Kn, E) 7−→ V,(13)

which we also denote by δΘ.

3. The global distribution

We will use the following notations throughout the rest of the article. We fix
a totally real algebraic number field F of degree d with ring of integers O. For a
non-zero ideal a ⊂ O we set N(a) = ](O/a). Given a place l of Q we denote by
Sl the set of places of F above l. Let σ1, . . . , σd denote the distinct embeddings
of F into R and ∞1, . . . ,∞d the corresponding Archimedean places. Via the fixed
embedding ι∞ : Q→ C we can and will view the σi as embeddings into Q.

If v is a place of F , we denote by Fv the completion of F at v. If q is a finite
place, we let Oq denote the valuation ring of Fq and ordq the additive valuation
such that ordq($) = 1 for any local uniformizer $ ∈ Oq. For an arbitrary place let
| · |v be the normalized multiplicative norm, i.e. | · |∞i

= |σi(·)| for i = 1, . . . , d and
| · |q = N(q)− ordq(·) if q is a finite place. We denote by Uv the invertible elements
of Ov if v is a finite place and the group of positive elements of Fv if v is a real

place. For a finite place q we let U
(m)
p = {x ∈ Uq |x ≡ 1 mod qm }.

Let A be the ring of adeles of F and I the idele group of F . We denote by
| · | : I→ R∗ the absolute modules, i.e. |(xv)v| =

∏
v |xv|v for (xv)v ∈ I. For a finite

set S of places of F we define the ”S-truncated adeles” AS (resp. ”S-truncated
ideles” IS) as the restricted product of all completions Fv (resp. F ∗v ) with v /∈ S
and put FS =

∏
v∈S Fv. We also set US =

∏
v∈S Uv and US =

∏
v/∈S Uv and

similarly we define U
(m)
S . If I is a finite set of places of Q, we often write AI

instead of A∪v∈ISl , UI instead of
∏
v∈I USl etc.

A (left) Haar measure of a locally compact group G will be denoted by dg. We
fix a non-trivial character ψ : A → S1 which is trivial on F . For a place v let ψv
be the restriction of ψ to Fv ⊂ A. We assume that the conductor of ψp is Op for
all places p ∈ Sp. Let dx (resp. dxv) denote the self-dual Haar measure of Mr(A)
(resp. Mr(Fv)) associated to the character ψ ◦ tr (resp. ψv ◦ tr). It follows that
dx =

∏
v dxv. We normalize the multiplicative Haar measure d∗xv on GLr(Fv) by

d∗xv = mv
dxv
|xv|v , where mv = 1 if v is real and mv is chosen such that GLr(Ov)

has volume 1 if v is finite. For a linear algebraic group G over F , a character

χ : G(A) → C∗ and a place v we let χv : G(Fv) ↪→ G(A)
χ−→ C∗ be the local

component of χ at v. Further, we write PG for the quotient of G by its center.
Given an algebraic character d: G → Gm,F we denote by G(F∞)+ ⊂ G(F∞) the
subgroup of elements which have totally positive image under d. Similarly, we define
G(F )+ etc. In the case G ⊂ GLr the superscript + is always meant with respect to
the determinant. Finally, we write Gp for the Galois group of the maximal abelian
extension of F unramified outside p and ∞.

3.1. Shalika models. In this section we recall the basics on global Shalika models
and their connection to L-functions. The main reference is [FJ93]. Until the end
of the article we denote by G the algebraic group GL2n and by Z its center. We
write B for be the Borel subgroup of upper triangular matrices in G. We view
H = GLn × GLn as an algebraic subgroup of G via the diagonal embedding. For
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m1,m2 ∈ Z we define the morphism of algebraic groups

detm1,m2 : H −→ Gm, (g1, g2) 7−→ det(g1)m1 det(g2)m2 .

The Shalika subgroup S of G is defined as

S =

{(
h 0
0 h

)(
1n X
0 1n

)∣∣∣∣h ∈ GLn, X ∈Mn

}
.

For the rest of this article we fix a continuous character η : I/F ∗ → C∗. It induces
a character ηψ : S(A)→ C∗ via(

h 0
0 h

)(
1n X
0 1n

)
7→ η(det(h))ψ(tr(X)).

Let V = ⊗vVv be a cuspidal automorphic representation of G(A) with central
character ω = ηn.

Definition 3.1. The cuspidal representation V has a (global) (η, ψ)-Shalika model
if there exist Φ ∈ V and g ∈ G(A) such that the following integral does not vanish:

ΞΦ(g) =

∫
Z(A)S(F )\S(A)

(π(g)Φ)(s)(ηψ(s))−1ds.

The integral is well-defined since Φ is a cusp form. The global Shalika functional
Λ: V → C is defined by Λ(Φ) = ΞΦ(1). By a simple change of variables we see that
Λ(sΦ) = ηψ(s)Λ(Φ) holds for all s ∈ S(A) and Φ ∈ V . We will assume from now
on that V has a (η, ψ)-Shalika model.

Example 3.2. (i) If n = 1, a Shalika functional is the same as a Whittaker func-
tional. Thus, every cuspidal automorphic representation of GL2(A) has a
Shalika model.

(ii) Let V be a cuspidal representation of GL2(A), which is neither of dihedral nor
of tetrahedral type. Then, by the work of Kim and Shahidi (cf. [KS02]) the
symmetric cube lift Π = Sym3(V ) is cuspidal. It is well-known that in this
case Π has a Shalika model (see for example [GR14], Proposition 8.1.1).

Proposition 3.3. Let f : I/F ∗ → C be a locally constant function, Φ an element
of V and s ∈ C. Then the integral

Ψ(Φ, f, s) =

∫
Z(A)H(F )\H(A)

Φ(h)
∣∣det1,−1(h)

∣∣s−1/2
f
(
det1,−1(h)

)
η−1(det0,1(h))dh

converges absolutely and defines an holomorphic function in s. If Re(s) is suffi-
ciently large, it equals the following absolutely convergent integral:

Z(Φ, f, s) =

∫
GLn(A)

ΞΦ

((
g 0
0 1n

))
f(det(g)) |det(g)|s−1/2

d∗g.

Proof. If f = χ : I/F ∗ → C∗ is a character and V is unitary, this is precisely
Proposition 2.3 of [FJ93]. By twisting with a character we may assume that V is
unitary. Since the locally constant characters form a basis of C0(I/F ∗,C) the claim
follows. �

The global Shalika functional factors as a product of local Shalika functionals in
the following sense: There exist non-zero functionals λv : Vv → C for every place
v of F such that Λ(Φ) =

∏
v λv(ϕv) holds for all pure tensors Φ = ⊗vϕv ∈ V =

⊗Vv. Hence, we have the equality ΞΦ =
∏
v ξ

λv
ϕv (see 2.2 for the definition of ξλvϕv ).

Moreover, we have λv(svϕv) = ηvψv(sv)λv(ϕv) for all ϕ ∈ Vv and sv ∈ S(Fv).
Thus, λv is a local Shalika functional of Vv as in Definition 2.12 for every finite
place v.
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Proposition 3.4. Let v be a finite place, ϕv ∈ Vv and χv : F ∗v → C∗ a character.
Then for every complex number s ∈ C with sufficiently large real part the following
local zeta integral converges absolutely:

ζv(ϕv, χv, s) =

∫
GLn(Fv)

ξλvϕv

((
g 0
0 1n

))
χv(det(g)) |det(g)|s−1/2

v d∗g.

There exists ϕv ∈ Vv such that L(Vv ⊗ χv, s) = ζv(ϕv, χv, s) holds for Re(s) large
enough and all unramified characters χv : F ∗ → C∗. Moreover, if Vv is unrami-
fied, this equality holds for a spherical vector. By our choice of Haar measure on
GL2n(Fv) we can choose the normalized spherical vector for almost all v.

Proof. See Proposition 3.1 and Proposition 3.2 of [FJ93] for the unitary case. The
non-unitary case follows by twisting with an appropriate character. �

3.2. The global distribution. The goal of this section is to construct the global
distribution and show that it fulfills the right interpolation property in the nearly
spherical case.

Let V = ⊗vVv be a cuspidal automorphic representation of G(A) having a (η, ψ)-
Shalika model. Further, we assume that we have given a stabilization Θ of the
semi-local representation Vp = ⊗p∈SpVp. Finally, we fix a finite set Σ of finite
places of F , which is disjoint from Sp.

For every integer m ≥ 1 we define Φ∞m,Σ = ⊗v-∞ϕm,Σ,v ∈ ⊗v-∞Vv to be the
following pure tensor:

• Case v /∈ Sp ∪ Σ: ϕv = ϕm,Σ,v is chosen as in the end of Proposition 3.4.
Especially, it is independent of m.

• Case v ∈ Σ: ϕv,Σ = ϕm,Σ,v is chosen such that

ζv(ϕv,Σ, χv, s) = 1

holds for all s and all unramified characters χv. See Section 3.9.3 of [GR14]
for an explicit construction of such a vector.

• Case p ∈ Sp: we define ϕm,p = ϕm,Σ,p =
[
GLn(Op) : K

(m)
n,p

]
· δΘp

(1
K

(m)
n,p

),

where K
(m)
n,p is the m-th principle congruence subgroup of GLn(Op).

The choice of a vector Φ∞ at infinity will be discussed at the end of section 4.2. For
now, we fix an arbitrary vector Φ∞ = ⊗ϕv ∈ ⊗v|∞Vv and put Φm,Σ = Φ∞m,Σ⊗Φ∞.

If f : I/F ∗ → C is a locally constant function, there exists some integer m ≥ 1 such

that f factors through I/F ∗U (m)
Sp

. For every s ∈ C the integral∫
I/F∗

f(x)|x|sµΘΣ
(dx) := Ψ(Φm,Σ, f, s+ 1/2)

converges absolutely by Proposition 3.3 and defines a holomorphic function in s. It
is easy to see that the integral is independent of the choice of m.

By class field theory the Artin map rec : I/F ∗ → Gp is continuous and surjective.
Hence, for every s ∈ C we can define a distribution µΘΣ,s ∈ Dist(Gp,C) by∫

Gp
f(γ)µΘΣ,s(dγ) =

∫
I/F∗

f(rec(x))|x|sµΘΣ
(dx)

for all f ∈ C0(Gp,C). In the following, we always identify a character on the Galois
group Gp with the corresponding idele class character.
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Proposition 3.5 (Interpolation property). For every character χ : Gp → C∗ we
have (up to a non-zero scalar) the following equality:∫

Gp
χ(γ)µΘΣ,s(dγ) =

∏
p∈Sp

e(Θp, χp, s+ 1/2)× LS∞∪Σ(π ⊗ χ, s+ 1/2)

×
∏
v∈S∞

ζv(ϕv, χv, s+ 1/2).

Proof. Since both sides of the equation are holomorphic in s it is enough to show
that the equality holds for Re(s) large. For m large enough we get∫

Gp
χ(γ)µΘΣ,s(dγ)

= Ψ(Φm,Σ, χ, s+ 1/2)

= Z(Φm,σ, χ, s+ 1/2)

=
∏
v

ζv(ϕm,Σ,v, χv, s+ 1/2)

=
∏

v/∈Sp,∞∪Σ

L(πv ⊗ χv, s+ 1/2)
∏

p∈Sp,∞

ζv(ϕm,p, χp, s+ 1/2)

by using Proposition 3.4 and by our choice of ϕm,p for p /∈ Sp,∞. Using Lemma 2.2
we see that

ζp(ϕm,p, χp, s+ 1/2) =

∫
GLn(Fp)

ξλp◦ϑp
ϕm,p

((
g 0
0 1n

))
χp(det(g)) |det(g)|sp d

∗g

=

∫
GLn(Fp)

χp(det(g)) |det(g)|sp µϑp
(dg)

= E(Θp, χp, s+ 1/2)

= e(Θp, χp, s+ 1/2) L(Vp ⊗ χp, s+ 1/2)

holds for all p ∈ Sp. �

Now let us assume that for all p ∈ Sp the local representation Vp is of the form

Vp = V ur
p ⊗ χ′p,

where V ur
p is a spherical representation and χ′p : F ∗p → C∗ is a character. The

representation V ur
p is isomorphic to an unramified principal series representation

for all p ∈ Sp. As in Section 2.3, we can choose χi,p : F ∗p → C∗ for all 1 ≤ i ≤ 2n
and all p ∈ Sp such that

• V ur
p = Ind

G(Fp)

B(Fp)(χ1, . . . , χ2n) and

• χi,p = ηpχ
−1
2n−i+1,p.

Let Θur
p = (πur

p , ρ
ur
p , ϑ

ur
p ) the unramified stabilizations of V ur

p associated to these
data, i.e. :

• πur
p = Ind

GLn(Fp)

Bn(Fp) (χ1, . . . , χn)⊗ Ind
GLn(Fp)

Bn(Fp) (χn+1, . . . , χ2n)

• ρur
p is the unique normalized spherical vector in πur

p

• ϑur is the canonical isomorphism

The local Satake parameters of Vp are given by βi,p = χi,p($)N(p)n−i+1/2, where

$ is a local uniformizer at p. We set αp =
∏2n
i=n+1 χi,p($). As in Section 2.3 we

assume that the technical condition βi,pβj,p 6= η±1($) holds for all 1 ≤ i < j ≤ n
and all p ∈ Sp.
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We consider the stabilization Θur ⊗ χ′ of Vp, whose local components are given
by Θur

p ⊗ χ′p. For a character χ : Gp → C∗ we define

f(χ′χ) =
∏
p∈Sp

f(χ′pχp)

and similarly

τ(χ′χ) =
∏
p∈Sp

τ(χ′pχp, ψ
−1
p ).

As an immediate consequence of Lemma 2.16, Proposition 3.5 and Theorem 2.24
we get

Corollary 3.6 (Interpolation property - the nearly spherical case). Under the
assumptions above we have that for every character χ : Gp → C∗ the following
equality holds (up to a non-zero scalar):∫

Gp
χ(γ)µΘur

Σ ⊗χ′,s(dγ) =N(f(χ′χ))nsτ(χ′χ)n
∏
p∈Sp

e′(Θur
p ⊗ χ′p, χp, s+ 1/2)

× LS∞∪Σ(π ⊗ χ, s+ 1/2)
∏
v∈S∞

ζv(ϕv, χv, s+ 1/2),

where the modified Euler factor e′(Θur
p ⊗ χ′p, χp, s+ 1/2) is equal to{∏n

i=1(1− βiχ($)q−s−1/2)(1− β−1
n+iχ($)−1qs−1/2) if ordp(f(χ′χ)) = 0

(N (p)
n2−n

2 αp)− ordp(f(χ′χ)) if ordp(f(χ′χ)) > 0.

4. Boundedness of the distribution

For a cohomological cuspidal representation and a critical half-integer s+1/2 we
are going to recast the definition of the distribution in terms of group cohomology.
As an immediate consequence the rationality of the distribution follows. Further,
we show that the weak ordinarity condition combined with the existence of lattices,
which are homologically of finite type, implies the boundedness of the distribution.
Let us fix a cuspidal automorphic representation V of G(A) with central character
ω : I/F ∗ → C∗. We put Vp = ⊗p∈SpVp and V∞ = ⊗v∈S∞Vv.

4.1. Cohomology classes attached to characters. Before attaching cohomol-
ogy classes to automorphic forms we attend to the simpler question of how to give
a cohomological description of distributions and characters.

Let R be a ring. The Artin reciprocity map induces a surjective map I∞/Up,∞ →
Gp, which yields an isomorphism H0(F ∗+, IndI∞

U∞(C0(Up, R))) → C0(Gp, R). The
pairing

C0(Up, R)×Dist(Up, N) −→ N

induces a cap product

H0(F ∗+, IndI∞
U∞(C0(Up, R)))×H0(F ∗+, c-indI∞

U ′ (Dist(Up, N)))

∩−→H0(F ∗+, c-indI∞
U ′ N) ∼=

⊕
N

∑
−→ N

for every subgroup U ′ ⊂ U∞ of finite index and every R-module N. The direct

sum decomposition H0(F ∗+, c-indI∞
U N) ∼= ⊕N follows from Shapiro’s Lemma and a

strong approximation type argument. This in turn yields a map

∂ : H0(F ∗+, c-indI∞
U ′ (Dist(Up, N))) −→ Dist(Gp, N).(14)

Let χ : I/F ∗ → C∗ be an algebraic Hecke character. It is of the form χ′ |·|s,
where χ′ is a finite order character and s ∈ Z and thus, its finite part takes values
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in a finite extension E of Q. Let R be the valuation ring of E with respect to ordp.
Then the finite part of ω away from p takes values in R∗.

Let us fix an F -rational algebraic group G and an algebraic character d: G →
Gm,F . For every s ∈ Z we write Vs[d] for the Q-rational representation (resp. its
base change to E) given by

ResF/Q G d−→ ResF/Q Gm,F
N−s−−−→ Gm,Q,

where N is the norm character. Let K ⊂ G(A∞) be an compact, open subgroup,
which lies in the kernel of the G(F )-invariant character

χ ◦ d: G(A)→ C∗.
We define the cohomology class

[dχ] ∈ H0(G(F )+, C(G(A∞)/K, Vs(d))) via

[dχ](g∞) = χ(d(g∞)) ∀g∞ ∈ G(A∞).
(15)

Let R be the completion of R and E its field of fractions. Assume that K can be
written as KpKp with Kp ⊂ G(Ap,∞) and Kp ⊂ G(Fp). We view Vs(d) ⊗E E as
a G(Fp)-representation, whose underlying vector space is E. We write Ls(d) for
the Kp-stable lattice R ⊂ E = Vs(d)⊗E E. It is easy to see that the image of [dχ]
under the standard isomorphism

C(G(A∞)/K, Vs(d)⊗E E)
∼=−→ C(G(Ap,∞)/Kp, Ind

G(Fp)
Kp

Vs(d)⊗E E)

is contained in H0(G(F )+, C(G(Ap,∞)/Kp, Ind
G(Fp)
Kp

Ls(d))).

4.2. Cohomological cuspidal representations. For every Archimedean place v
we define Kv ⊂ G(Fv) ∼= G(R) as the product of the maximal compact subgroup
O(2n) and the center Z(Fv) = Z(R) ofG(Fv). We denote by gv the complexification
of the Lie algebra of G(Fv) and similarly we write kv for the complexification of the
Lie algebra of Kv. We put K∞ =

∏
v|∞K∞, k∞ = ⊕v|∞kv and g∞ = ⊕v|∞gv.

Let us recall that the (g∞,K
◦
∞)-cohomology of a (g∞,K

◦
∞)-module W can be

computed by the Chevalley-Eilenberg complex:

Hj((g∞,K
◦
∞),W ) = Hj(HomK◦∞

(Λ•(g∞/k∞),W )).

(See the book [BW00] of Borel and Wallach for the basics on (gv,K
◦
v )-modules and

their cohomology.) Note that there is a Künneth rule for (g∞,K
◦
∞)-cohomology,

i.e. if W = ⊗vWv, where each Wv is a (gv,K
◦
v )-module, we have

Hj((g∞,K
◦
∞),W ) =

⊕
∑
jv=j

⊗
v|∞

Hjv ((gv,K
◦
v ),Wv).(16)

The representation Vv is a (gv,K
◦
v )-module for all v ∈ S∞. Given dominant weights

µv = (µ1,v, . . . , µ2n,v) ∈ Z2n for all v ∈ S∞ we let Vµv be the complexification
of the irreducible Fv-rational representation of G(Fv) of highest weight µv. (As
always, highest weight is meant with respect to the Borel group of upper triangular
matrices.) We put Vµ = ⊗v∈S∞Vµv . This is a C-rational representation of the
algebraic group ResF/Q GL2n.

Definition 4.1. The representation V is cohomological of weight µ if there exists
an integer j ∈ N such that the (g∞,K

o
∞)-cohomology group Hj((g∞,K

◦
∞), V∞⊗V ∨µ )

does not vanish.

From now one we assume that V is cohomological of weight µ and put Val = Vµ. By
the work of Clozel (cf. [Clo90] Lemma 4.9) it is known that there exists an integer
w - the purity weight of V - such that

µi,v + µ2n−i+1,v = w
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holds for all 1 ≤ i ≤ n and v ∈ S∞.

Remark 4.2. (i) If V has a (η, ψ)-Shalika model, then it follows from the proof
of [GR13] Theorem 5.3 that ηv = sgnw | · |w for all v ∈ S∞.

(ii) The central character of a cohomological representations is always an algebraic
Hecke character.

We define q0 = n2 +n− 1 and set q = dq0. By the discussion in [GR14], Section
3.4, the cohomology group Hqv ((gv,K

◦
v ), Vv ⊗ V ∨µv ) is 2-dimensional if qv = q0 and

vanishes if qv > q0 for every v ∈ S∞. Hence, by the Künneth formula (16) we see
that

Hq((g∞,K
◦
∞), V∞ ⊗ V ∨al ) =

⊕
qv=q0

⊗
v|∞

Hqv ((gv,K
◦
v ), Vv ⊗ V ∨µv )

∼=
⊕
qv=q0

⊗
v|∞

C2.

Moreover, there is a natural K∞/K
◦
∞-action on Hq((g∞,K

◦
∞), V∞ ⊗ V ∨al ). The ε-

eigenspace of this action is one-dimensional for every character ε of K∞/K
◦
∞. We

fix generators [V∞]
ε

of these eigenspaces. By Section II.3.4 of [BW00] we have a
canonical inclusion

Hj(g∞,K
◦
∞, V∞ ⊗ V ∨al ) ⊂ HomK◦∞

(Λj(g∞/k∞), V ⊗ V ∨al ).

Thus, after choosing a basis (X∗i ) of (gv/kv)
∨ and a basis b∨v,d of V ∨µv we can write

[V∞]
ε

= ⊗v∈S∞ [Vv]
εv as

[Vv]
εv =

∑
i=(i1,...,iq0 )

dimV ∨µv∑
l=1

X∗i ⊗ ϕ
εv
v,i,l ⊗ b

∨
v,l.

Here ϕεvv,i,l are elements of Vv and (X∗i ) = X∗i1 ∧ · · · ∧ X
∗
iq0

for i = (i1, . . . , iq0).

Finally, we set

[Vv] :=
⊕
εv

[Vv]
εv

and

[V∞] :=
⊕
ε

[V∞]
ε
.

Our aim is to show that the distribution µΘ,s defined in the previous chapter
is a p-adic measure provided that s + 1/2 ∈ C is a critical point of π. We do not
want to recall the definition of criticality of a point here. It is enough to know the
following two facts: Firstly, by [GR14] Proposition 6.1.1 the set of critical points of
V is given by

Crit(π) = {s+ 1/2 ∈ Z + 1/2 | −µn,v ≤ s ≤ −µn+1,v ∀v ∈ S∞} .
Secondly, if s+ 1/2 is critical, then for all v ∈ S∞ there is a unique 1-dimensional
H(C)-stable subrepresentation Vs,v of Vµv which is isomorphic to the representation

given by the character det−s,s+w. This is proven in [GR14] Proposition 6.3.1. for
the case s = 0. The other cases follow by twisting the representation with an
integral power of the determinant.

When we defined the distribution in Section 3.2, we had not specified the vec-
tor at infinity. We will catch up with this now. Let hQ be the Lie-Algebra of
the algebraic group H over Q and k′Q the Lie subalgebra of the Q-rational alge-
braic subgroup H ∩ Z SO2n. The dimension of hQ/k

′
Q is exactly q0. We fix a

Q-basis T1, . . . , Tq0 of hQ/k
′
Q and denote by Ti,v the image of Ti in gv/kv for ev-

ery Archimedean place v. Additionally, we fix a generator xs,v of the subspace
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Vs,v ⊂ Vµv for every critical point s+ 1/2 of V and every place v ∈ S∞. Evaluation
of

[Vv] =
∑

i=(i1,...iq0 )

dimV ∨µv∑
d=1

X∗i ⊗ ϕv,i,d ⊗ b∨v,d

at (T1,v, . . . , Tq0,v, xs,v) yields an element ϕs,v ∈ πv. We will choose Φs,∞ =
⊗v|∞ϕs,v as the vector at infinity in the definition of the distribution µΘ,s. It
is important to know that the complex numbers

c(V∞, χ∞, s+ 1/2) =
∏
v|∞

ζ(ϕs,v, χv, s+ 1/2)

do not vanish for any character χ∞ : F ∗∞ → {±1}. Otherwise, the distribution µΘ,s

would trivially be zero. Luckily, the non-vanishing is known by the work of Sun
(cf. [Sun11]). In particular, we have that for every critical point s+ 1/2 and every
locally constant character χ∞ the equality

c(V∞, χ∞, s+ 1/2) = L(π∞ ⊗ χ∞, s+ 1/2).

holds up to a non-zero constant.

4.3. The Eichler Shimura homomorphism. In the following we are going to
explain the (adelic) Eichler-Shimura map: Let Xv = G(Fv)

+/K◦v be the symmetric
space associated to G(Fv) for v ∈ S∞. We put X =

∏
v∈S∞ Xv and denote by e

the image of the unit element under the canonical projection
∏
v∈S∞ G(Fv)

+ → X.

We can naturally identify the tangent space TX,e of X at e with g∞/k∞. The
Eichler-Shimura map for an integer j ≥ 0 is a G(A∞)-equivariant homomorphism

Hq((g∞,K
◦
∞), V ⊗ V ∨al )→ H0(G(F )+, C0(G(A∞),Ωqfd,har(V

v
al))),

where Ωqfd,har(V
∨
al ) is the space of fast decreasing harmonic q-differential forms

on X with values in V ∨al as defined by Borel (cf. [Bor81]). It is given as fol-
lows: By definition V is a subrepresentation of the right regular representation
on C∞(G(F )\G(A)). Given η ∈ HomK∞(Λj(g∞/h∞), V ⊗ V ∨al ) we can evaluate it
on a j-tuple (Y1, . . . , Yj) of tangent vectors at e and get

η(Y1, . . . , Yj) ∈ C∞(G(F )\G(A), V ∨al ).

For an element (x, g∞) ∈ X ×G(A∞) choose g∞ ∈
∏
v∈S∞ G(Fv) such that g∞e =

x. Let Dg∞ the differential of the action of g∞ on X. Sending tangent vectors
Y1, . . . , Yj at a point x ∈ X to

η̃(g∞)x(Y1, . . . , Yj) = g−1
∞ (η((Dg∞)−1Y1, . . . , (Dg∞)−1Yj)(g∞, g

∞))

defines a differential form η̃(g∞) on X with values in V ∨al . Since cusp forms are
fast decreasing we see that we get in fact a fast decreasing differential form. It
follows from Section II.3 of [BW00] that every differential form in the image of the
Eichler-Shimura map is closed and harmonic.

The choice of an element

[V∞] ∈ Hj((g∞,K
◦
∞), V∞ ⊗ V ∨al )

made at the end of Section 4.2 yields a map

ES:
⊗
v-∞

Vv −→ H0(G(F )+, C0(G(A∞),Ωqfd,har(V
v
al))).



ON SHALIKA MODELS AND P-ADIC L-FUNCTIONS 29

Definition 4.3. Let S be a finite set of finite places and R a ring which contains the
image of IS∪S∞ under ω. We fix an algebraic subgroup A ⊂ G, which contains the
center of G. For every R[A(F )+]-module M and every compact, open subgroup K ⊂
G(AS∪S∞) we define CSω (A,K,M) to be the R-module of functions f : A(AS∪S∞)→
M such that f(gkz) = w(z)f(g) for all g ∈ A(AS∪S∞), k ∈ K ∩ A(AS∪S∞) and
z ∈ Z(AS∪S∞). If S is the empty set, we omit it from the notation.

If Φ ∈ ⊗v-∞Vv is invariant under some compact, open subgroup K ⊂ G(A∞),
we see that

ES(Φ) ∈ H0(PG(F )+, Cω(G,K,Ωqfd,har(V
v
al)))

In fact, we need a slight variant of the above construction. Given Φp ∈ ⊗v-p,∞Vv
invariant under some compact, open subgroup Kp ⊂ G(Ap,∞) we define

ESp(Φp) ∈ H0(PG(F )+, CSpω (G,Kp,Hom(Vp,Ω
q
fd,har(V

v
al))))

by

ESp(Φp)(gp, ϕp) = ES(Φp ⊗ ϕp)(gp, 1)

for ϕp in Vp. Evaluation at an element ϕp of Vp, which is invariant under some
compact, open subgroup Kp ⊂

∏
p∈Sp G(Fp), induces a PG(F )+-equivariant map

CSpω (G,Kp,Hom(Vp,Ω
q
fd,har(V

v
al)))

ev(ϕp)−−−−→ Cω(G,KpKp,Ω
q
fd,har(V

v
al))

such that ev(ϕp)(ESp(Φp)) = ES(Φp ⊗ ϕp).
Let X̄ the Borel-Serre bordification of X with boundary ∂X as constructed

in [BS73]. It is a smooth manifold with corners, which contains X as an open
submanifold. The embedding X ⊂ X̄ is a homotopy equivalence. The operation of
G(F )+ can be extended naturally to X̄. If M is a smooth manifold with corners, we

let Csing
• (M) be the complex of singular chains in M and Csm

• (M) the subcomplex
of smooth chains By Lemma 5 of [Whi34] continuous chains can be approximated by

smooth chains. Hence by a standard argument the inclusion Csm
• (M) ⊂ Csing

• (M)
is a quasi-isomorphism (see chapter 16 of [Lee03] for a detailed proof in the case of
smooth manifolds without corners). Using this fact for both X̄ and its boundary
∂X, we see that the complex Csm

• (X̄, ∂X) := Csm
• (X̄)/Csm

• (∂X) is quasi-isomorphic

to the complex of relative singular chains Csing
• (X̄, ∂X). Note that these are in fact

quasi-isomorphisms of complexes of G(F )+-modules.
For every integer j ≥ 0 there is a PG(F )+-equivariant pairing

Ωjfg(V
∨
al )× Csm

j (X̄, ∂X)→ V ∨al

given as follows: We denote by ∆j the standard simplex of dimension j. If f : ∆j →
X̄ is a smooth chain and η a fast decreasing differential form, we take the integral
of the pullback f∗η over the pre-image of X under f . If the differential form is
closed, it vanishes on the image of the boundary map Csm

j+1(X̄, ∂X)→ Csm
j (X̄, ∂X)

by Stokes’ Theorem.
Therefore we get a G(F )+-equivariant morphism of co-complexes

Ωjfd,har(V
∨
al )[−j]→ Hom(Csm

• (X̄, ∂X), V ∨al ),

which induces the following maps in (hyper-)group cohomology:

H0(PG(F )+, Cω(G,K,Ωjfd,har(V
v
al)))

−→Hj(PG(F )+, Cω(G,K,Hom(Csm
• (X̄, ∂X), V ∨al )))
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and

H0(PG(F )+, CSpω (G,Kp,Hom(Vp,Ω
q
fd,har(V

v
al))))

−→Hj(PG(F )+, CSpω (G,Kp,Hom(Vp,Hom(Csm
• (X̄, ∂X), V ∨al )))).

We will denote the image of ES(Φ) (resp. ESp(Φp)) under the above map for j = q
by EScoh(Φ) (resp. ESpcoh(Φp)).

4.4. The Steinberg module. In this chapter we recall some standard facts about
the Steinberg module of an algebraic group and about Borel-Serre duality. Let G
be a connected split reductive group over F of semi-simple F -rank l ≥ 1 and I the
set of proper maximal F -rational parabolic subgroups of G(F ). For τ ∈ I let Pτ the
corresponding parabolic group. A subset S = {τ0, . . . , τk} ⊂ I of cardinality k + 1
is called k-simplex if Pτ1 ∩ . . . ∩ Pτk is a parabolic subgroup. Let Stk be the free
abelian group generated by the k-simplices on I. Taking the associated simplicial
complex we get a sequence of G(F )-modules

Stl−1 → Stl−2 → · · · → St0 → Z→ 0.(17)

Definition 4.4. The Steinberg module StG of G(F ) is the kernel of the map
Stl−1 → Stl−2 (where we set St−1 = Z if l = 1).

Let Pk be the set of proper F -rational parabolic subgroups of semi-simple F -rank
l − 1− k containing a fixed Borel subgroup B(F ) of G(F ). Then for 0 ≤ k ≤ l − 1
there is a natural isomorphism of G(F )-modules⊕

P∈Pk

c-ind
G(F )
P(F ) Z

∼=−→ Stk .

The homology of the complex (17) can be identified with the reduced homology
of the spherical building associated to G(F ). Since the reduced homology of the
building vanishes outside the top degree (see for example [BS76]) the following
complex of G(F )-modules is exact:

0→ StG → Stl−1 → · · · → St0 → Z→ 0

Remark 4.5. Because every parabolic subgroup of G contains the center Z of G,
we see that StG and StG/Z are canonically isomorphic.

The choice of a Borel subgroup B with maximal torus T gives us the element

τG =
∑
w∈WG

w ⊗ ε(w) ∈ StG ⊂ Z[G(F )]⊗Z[B(F )] Z,

whereWG denotes the Weyl group of G with respect to T and ε : WG → Z∗ is the sign
character corresponding to B. Now let P be a parabolic subgroup containing B and
let L be the Levi-factor containing the torus T. There exists an L(F ) equivariant
map

StL → StG(18)

which maps τL to τG (see Proposition 1.1 of [Ree90]).
By [BS73] every arithmetic subgroup Γ ⊂ G(F ) is a virtual duality group with

duality module StG. Let ν = ν(Γ) be the virtual cohomological dimension of Γ.
It is independent of the choice of the arithmetic subgroup. Since StG is Z-free it
follows from [Bro82], chapter VIII.10, that the map

BSΓ : H•(Γ,Hom(StG,M))
∩e−→ Hν−•(Γ,StG⊗Hom(StG,M))

ev−→ Hν−•(Γ,M)

is an isomorphism for every Γ-module M as long as Γ is torsion-free. Here e ∈
Hν(Γ,StG) ∼= Z is a fundamental class (see [Bro82] VIII.6) and ev is the map
induced by the evaluation map StG⊗Hom(StG,M) → M . Now let K ⊂ G(A∞)
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be a compact, open subgroup. After passing to a subgroup of finite index we may
assume that G(F ) ∩ gKg−1 is torsion-free for all g ∈ G(A∞). For every K-module
M and every subgroup G(F )′ ⊂ G(F ) of finite index we get an isomorphism

BSG : H•(G(F )′, Ind
G(A∞)
K Hom(StG,M))

∼=−→ Hν−•(G(F )′, c-ind
G(A∞)
K M)(19)

as follows: By strong approximation the quotient G(F )′\G(A∞)/K is finite. Let
g1, . . . , gr be a set of representatives of this double quotient and consider the torsion-
free arithmetic subgroups Γi = G(F )′ ∩ giKg−1

i . By Shapiro’s Lemma we get an
isomorphism

H•(G(F )′, Ind
G(A∞)
K Hom(StG,M))

∼=−→
r⊕
i=1

H•(Γi,Hom(StG,M)).

Using Borel-Serre duality for every Γi and Shapiro’s Lemma for homology after-
wards yields the isomorphism (19). We are mostly interested in the case G = H/Z.
Theorem 11.4. of [BS73] gives us ν(Γ) = d(n2 + n − 1) − 2n + 1 = q − 2n + 1 for
every arithmetic subgroup Γ of H(F )/Z(F ).

We can use the Steinberg module to give another description of the Eichler-
Shimura map. By Corollary 8.4.2 of [BS73] there is a homotopy equivalence between
the boundary ∂X of the Borel-Serre bordification of the symmetric space X and
the Bruhat-Tits building of G(F ) which gives a PG(F )+-equivariant isomorphism
of singular homology groups. Since X̄ is contractible the long exact sequence for
relative homology shows that Hj+1(X̄, ∂X) is isomorphic to the reduced homology

H̃j(∂X). Thus, the complex Hom(Csm
• (X̄, ∂X), V ∨al ) is quasi-isomorphic to the

complex Hom(StG, V
∨
al )[−2n+ 1]. Therefore, we have isomorphisms

Hj(PG(F )+, Cω(G,K,Hom(Csm
• (X̄, ∂X), V ∨al )))

∼=−→Hj−2n+1(PG(F )+, Cω(G,K,Hom(StG, V
∨
al )))

and

Hj(PG(F )+, CSpω (G,Kp,Hom(Vp,Hom(Csm
• (X̄, ∂X), V ∨al ))))

∼=−→Hj−2n+1(PG(F )+, CSpω (G,Kp,Hom(Vp,Hom(StG, V
∨
al )))).

We will identify EScoh(Φ) (resp. ESpcoh(Φp)) with its image under the above iso-
morphism for j = q.

4.5. Modular symbols. Let E be the field of definition of the finite part of V .
Each Vv, v /∈ S∞, is defined over E and by abuse of notation we will denote its model
over E also by Vv. Since all embeddings F ↪→ C factor through E , the algebraic
representation Val also has a model over E . Again, we will denote this model by
Val.

Definition 4.6. Let S be a finite set of finite places and R an algebra over the
localization of the ring of integers of E at ω(IS∪S∞). We fix a compact, open
subgroup K ⊂ G(AS∪S∞) and an algebraic subgroup A ⊂ G containing the center.
Further, let M be an R[A(F )+] module, on which the center acts via

Z(F )+ −→
∏

v∈S∪S∞

Vv
ω−→ R∗.

and N an R-module with trivial G(F )+-action. The module of N -valued modular
symbols of weight M , level K and character ω on A is defined as

MS
ω(A,K,M,N) := Hq−2n+1(PA(F )+, CSω (A,K,HomR(M,N)).

We will omit S (resp. ω) from the notation if S = ∅ (resp. ω is trivial).
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Our main example of a weight module will be the E-vector space

ṼS = Val ⊗
⊗
v∈S

Vv.

For an compact, open subgroup K ⊂ G(A∞) (resp. Kp ⊂ G(Ap,∞)) one can
rephrase the Eichler-Shimura map (resp. its p-augmented version) as a homomor-
phism

EScoh : (⊗v/∈S∞Vv)
K −→Mω(G,K,StG⊗Val,W )

resp. ESpcoh :
(
⊗v/∈Sp,∞Vv

)Kp

−→MSp
ω (G,Kp,StG⊗ṼSp ,W )

Lemma 4.7. Let S∞ ⊂ S be a finite set of finite places and K ⊂ G(AS∪S∞) an
compact, open subgroup. Then:

(a) The canonical map

MS
ω(G,K,StG⊗ṼS , E)⊗W −→MS

ω(G,K,StG⊗ṼS ,W )

is an isomorphism for all E-vector spaces W .

(b) The E ′-module MS
ω(G,K,StG⊗ṼS , E ′) is finitely generated for every E-algebra

E ′.

Proof. More generally, we will prove the above statements for the modules

Hj(PG(F )+, CSω (G,K,HomE(StG⊗ṼS ,W )))

for all j ∈ N.
(a) We break the exact sequence 0 → StG → St2n−2 → · · · → St0 → Z → 0 into
short exact sequences and consider the associated long exact sequences Hj(·,W )
and Hj(·, E) ⊗W . By induction we see that it is enough to proof (a) with StG
replaced by Sti, −1 ≤ i ≤ 2n−2. Since the modules Sti are direct sums of modules

of the form c-ind
PGL2n(F )
PQ(F ) Z with PQ ⊂ PGL2n (not necessarily proper) parabolic

subgroups, it is enough to show that

Hj(PG(F )+, CSω (G,K,HomE(c-ind
PGL2n(F )
PQ(F ) Z⊗ ṼS ,W )))

= Hj(PG(F )+, Ind
GL2n(F )
PQ(F ) C

S
ω (G,K,HomE(ṼS ,W )))

= Hj(PQ(F )+, CSω (G,K,HomE(ṼS ,W )))

commutes with base change In [SS93] Schneider and Stuhler construct for every
v ∈ S a finite resolution

0 −→ Cv,m −→ . . . −→ Cv,0 −→ Vv −→ 0

in CE(G(Fv)), where each Cv,i is of the form

Ci = c-ind
G(Fv)
Kv,[i]Z(Fv) Li ⊗ ωv

with compact, open subgroups Kv,[i] ⊂ G(Fv) and E [K[i]]-modules Li, which are
finite-dimensional over E . A similar argument as above shows that it is enough to
proof that cohomology groups of the form Hj(PQ(F )+, Cω(G,K,HomE(Val,W )))
commute with base change.

By strong approximation (and the Iwasawa decomposition) the double quotient

PQ(F )+\PG(A∞)/K

is finite. We choose a system of representatives g1, . . . , gr of the above double
quotient and define the arithmetic subgroups

Γi = PQ(F )+ ∩ gi (KZ(A∞)/Z(A∞)) g−1
i .
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From Shapiro’s Lemma we get the equality

Hj(PQ(F )+, CSω (G,K,HomE(Val,W ))) =

r⊕
i=1

Hq(Γi,HomE(Val,W ))

=

r⊕
i=1

Hq(Γi, V
∨
al ⊗W ).

Since the groups Γi are arithmetic, they are of type (VFL). It follows that the
functor W 7→ Hq(Γi, V

∨
al ⊗W ) commutes with direct limits (cf. [Ser72]).

(b) can be proven in exactly the same manner. �

For the remainder of the article we stick to the case S = Sp. Let R be the valuation
ring of E with respect to ordp, R its completion and write E for the field of fractions
of R. A place v ∈ S∞ induces an embedding F ↪→ E ↪→ R and thus a place p ∈ Sp
via ordp. For every p ∈ Sp we define

Sp
∞ = {v ∈ S∞ | v induces p} .

The representation Val can be written as a tensor product Val = ⊗v∈S∞Val,v. We
put

V p
al = ⊗v∈Sp

∞
Val,v and Ṽ p

Sp
= Vp ⊗ V p

al.

Then V p
Sp,∞

⊗E E is a locally Qp-rational representation of G(Fp).

Definition 4.8. (i) The representation ṼSp is called homologically integral if the

representations Ṽ pSp ⊗E E are homologically integral for all p ∈ Sp.

(ii) A lattice L ⊂ ṼSp ⊗E E is called homologically of finite type if it is of the form

L = ⊗p∈SpLp, where Lp is a homologically of finite type lattice in Ṽ pSp ⊗E E
for each p ∈ Sp.

Proposition 4.9. Assume that L is a lattice in ṼSp ⊗E E, which is homologically
of finite type. Then:

(a) The canonical map

MSp
ω (G,K,StG⊗L,R)⊗N −→MSp

ω (G,K,StG⊗L,N)

is an isomorphism for all flat R-modules N .

(b) The R-module M
Sp
ω (G,K,StG⊗L,R) is finitely generated.

Proof. Replacing the Schneider-Stuhler resolution by the resolution (4) the same
proof as for Lemma 4.7 works. �

4.6. Cohomological description of the distribution. Besides the running as-
sumption that V is cohomological with respect to Val we are going to assume in the
following that

• s+ 1/2 is critical for V ,
• we have given a stabilization Θ of Vp over a finite extension E ′ ⊂ C of E

and
• V has a (η, ψ)-Shalika model with respect to some idele class character η,

whose finite part takes values in E .

We choose a pure tensor Φp,∞Σ = Φp,∞Σ,m ∈ ⊗v/∈Sp∪S∞Vv as in Section 3.2 and Kp ⊂
G(Ap,∞) an compact, open subgroup such that

• KpG(Op) is neat, i.e. G(F ) ∩ gKpG(Op)g−1 is torsion-free for every g ∈
G(A∞),

• Φp,∞Σ is invariant under Kp and

• (η ◦ det0,1)(Kp
H) = 1, where Kp

H is the intersection of Kp with H(Ap,∞).
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Let U ′ ⊂ U∞ be the subgroup generated by Up and the image of Kp under the
determinant. The main aim of this section is to construct functorial maps

∆s
W : MSp,∞

ω (G,Kp,StG⊗ṼSp ,W )→ H0(F ∗+, c-indI∞
U ′ (Dist(Up),W ))

for all E-vector spaces W such that ∂(∆s
C(ESpcoh(Φp))) = µΘ,s holds up to multipli-

cation by a non-zero constant.
The homomorphism ∆s

W is constructed in several steps: Firstly, the map (18)
from StH to StG together with the restriction of functions yields the map

MSp
ω (G,Kp,StG⊗ṼSp ,W )

ResH−−−→MSp
ω (H,Kp,StH ⊗ṼSp ,W ).

Secondly, s + 1
2 is critical. Hence, by the discussion in Section 4.2 there is unique

1-dimensional H(F )-subrepresentation Vs of Val, which is given by the algebraic
character

ResF/Q GL2n
det−s,s+w−−−−−−→ ResF/Q Gm,F

N−→ Gm,Q.

The map δΘ as defined in (13) together with the inclusion Vs ↪→ Val gives a map

MSp
ω (H,Kp,StG⊗ṼSp ,W )

δ∨Θ,s−−−→MSp
ω (H,Kp,StH ⊗Vs ⊗ IC0

ω(G(Op), E),W ).

By Remark 4.2 we have

[det1,−1
|·|s ] ∪ [det0,−1

η ] ∈ H0(PH(F )+, Cω−1(H,K, Vs))

for the cohomology class associated to the character
∣∣det1,−1

∣∣s η(det0,−1) as in (15).

Thus, taking the cap product with [det1,−1
|·|s ] ∪ [det0,−1

η ] induces a map

MSp
ω (H,Kp,StH ⊗Vs ⊗ IC0

ω(G(Op), E),W )

[s,η]−−−→MSp(H,Kp,StH ⊗IC0(G(Op), E),W ).

Borel-Serre duality (19) gives an isomorphism

MSp(H,Kp,StH ⊗IC0(G(Op), E),W )
BSH−−−→ H0(PH(F )+, IDist(G(Op),W )).

Finally, the pushforward map (2) applied to the determinant det : G(Op) → Up
induces a map

H0(PH(F )+, IDist(G(Op),W ))
det∗−−−→ H0(F ∗+, c-indI∞

U ′ (Dist(Up),W ).

Now we can define ∆s
W as the following composition:

∆s
W = det∗ ◦BSH ◦[s, η] ◦ δ∨Θ,s ◦ ResH .

Lemma 4.10. There exists a constant c ∈ C∗ such that

∂(∆s
C(ESp(Φp,∞Σ )coh)) = c · µΘΣ,s.

Proof. We have to evaluate both sides on locally constant functions f : Gp → C.
We can view such a function f as an F ∗+-invariant function on I∞/Up,∞. Since
I∞/F ∗+ is compact, there exists an m ∈ N such that f factors through the quotient

I∞/Up,∞U (m)
p . Hence, to calculate the right hand side one can replace all distribu-

tion and function spaces in the above construction by (co-)inductions of the trivial
representation from open subgroups. Now all involved cohomology groups can be
written purely in terms of the (de Rham) cohomology of the associated symmetric
spaces. The claim then follows by standard computations (see for example [Har87],
Section 5.3). �
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Corollary 4.11 (Rationality of the distribution). The distribution µΘΣ,s takes
values in a finite dimensional vector space over E ′. For every character ε : F ∗∞ →
{±1} there exists a period Ωε ∈ C∗ such that∫

Gp
χµΘΣ,s ∈ E ′χΩχ∞

for all characters χ : Gp → C∗. Here E ′χ ⊂ C denotes the field you get by adjoining
the image of χ to E ′.

Proof. The first assertion follows directly from Lemma 4.7 and the lemma above.
For the second assertion let ϕp ∈ Vp be the essential vector as defined in [JPSS81]
and Kp ⊂ G(Op) its stabilizer. We put Kp =

∏
p∈Sp Kp and K = KpKp. By

Frobenius reciprocity we have a surjective map

c-ind
G(Fp)

KpZ(Fp) ωp
ev−→ Vp,

which induces a map on modular symbols

MSp
ω (G,Kp,StG⊗ṼSp ,W )

ev∨−→Mω(G,K,StG⊗Ṽal,W ).

By Lemma 1.1 the map

δΘ : IC0
ωp

(G(Op), E ′) 7−→ Vp

of Section 2.5 can be lifted to a map

δ̃Θ : IC0
ωp

(G(Op), E ′) 7−→ c-ind
G(Fp)

KpZ(Fp) ωp.

Thus, we get a commutative diagram of the form:

MSp
ω (G,Kp,StG⊗ṼSp ,W ) Mω(G,K,StG⊗Ṽal,W )

H0(F ∗+, c-indI∞
U ′ (Dist(Up),W ))

ev

∆s
W

By Section 3.9 of [GR14] the pure tensor
(
⊗p∈Spϕp

)
⊗Φp,∞Σ can be chosen to be in

the rational Shalika model as defined in loc. cit. if Σ contains all primes at which
V is ramified. Therefore, the claim follows from multiplicity one in this case. The
general case follows from Lemma 7.1.1 of [GR14]. �

Let E′ be the completion of E ′ with respect to ordp and R′ its valuation ring.

We can regard Θ as a stabilization of ṼSp ⊗E′ E′ and thus, the notion of weak
ordinarity makes sense.

Corollary 4.12 (Integrality of the distribution). (a) The distribution µΘΣ,s is a
p-adic measure provided that Θ is weakly ordinary with respect to Val and that
Vp ⊗ Val is homologically integral.

(b) Assume that Θ is weakly ordinary with respect to Val and that for every p in Sp
one of the following conditions hold:

• Ṽ p
Sp
⊗E′ E′ is a smooth ordinary principal series representation or

• Fp = Qp, V p
al has p-small weights, Vp is a twist of an unramified principal

series representation and the central character of Ṽ p
Sp
⊗E′ E′ takes values

in Z∗p
Then µΘΣ,s is a p-adic measure.
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Proof. (a) Let L ⊂ ṼSp be a lattice, which is homologically of finite type. By
Lemma 2.11 and the discussion at the end of Section 4.1 we can construct maps

∆s
N : MSp,∞

ω (G,Kp,StG⊗L,N)→ H0(F ∗+, c-indI∞
U ′ (Dist(Up), N))

for all R′-modules N , which agrees with the previous definition if N is an E′-vector
space. Therefore, the claim follows from Proposition 4.7.
(b) follows from (a) together with Theorem 1.6 and Theorem 1.8. �

In case µΘΣ,s is a p-adic measure, we can define its associated p-adic L-function

as follows: Let χcyc : Gp → Z∗p be the cyclotomic character, i.e. γζ = ζχcyc(γ) holds
for all p-power roots of unity ζ and all γ ∈ Gp. For x ∈ Zp and γ ∈ Gp we put
〈γ〉x = expp(x logp(χcyc(γ))), where expp (resp. logp) is the p-adic exponential map
(resp. logarithm map). The p-adic L-function attached to µΘΣ,s is defined by

Lp(ΘΣ, s, x) =

∫
Gp
〈γ〉x µΘΣ,s(dγ).

It is an analytic function on Zp with values in a finitely generated R′-submodule of
E′ ⊗E′ C.

Remark 4.13. (i) Even in the non-weakly ordinary situation we can use Lemma
2.11 (or rather its proof) to give bounds on the order of growth of our distri-
butions in terms of slopes of stabilizations.

(ii) There should be relations between the distributions µΘΣ,s for different critical
points s+1/2. These relations together with the above mentioned bounds would
enable us to construct for every stabilization of non-critical slope a unique
locally analytic distribution, which interpolates special values at all critical
points. In upcoming work of Santiago Molina and the author it is shown
that these relations follow directly from Lemma 2.11 in the GL2-case, thus
giving a new construction of Dabrowski’s p-adic L-function for Hilbert modular
forms (cf. [Dab94]). This enables us to generalize the work of Spieß on the
exceptional zero conjecture to Hilbert modular forms of higher weight.

5. Examples

We want to give some examples to our construction. The natural source for these
are odd symmetric powers of p-ordinary Hilbert modular forms over totally real
fields F , in which p is totally split. To keep the notation simple we only deal with the
case F = Q. Let f be a cuspidal newform of level Γ1(N), p - N , and weight k ≥ 2.
The associated cuspidal automorphic representation V of GL2(A) is cohomological

with respect to the representation (Symk−2 C2)∨. The local component Vp is an

unramified principal series representation of the form Ind
GL2(Qp)

B2(Qp) (χ1, χ2). Let us

put α = χ2(p) and α′ = χ1(p). Then, as explained at the end of section 2.2 the
weak ordinarity condition is equivalent to ordp(α) = 1 and ordp(α

′) = k− 2. Thus,
the notion of weakly p-ordinarity coincides with the usual ordinarity condition at
p. In this case our construction gives the classical p-adic L-function as constructed
for example in [MTT86].

By the work of Kim and Shahidi (cf. [KS02]) the symmetric cube Sym3 V of V
is known to be a cuspidal automorphic representation of GL4(Q) if f is not a CM-
form. The representation Sym3 V is cohomological with respect to the algebraic
representation of highest weight (0,−(k − 2),−2(k − 2),−3(k − 2)) (see [RS08])

and the local representation at p is given by Ind
GL4(Qp)

B4(Qp) (χ3
1, χ

2
1χ

1
2, χ

1
1χ

2
2, χ

3
2). If f is

p-ordinary, we get

ordp(α
−5(α′)−1pk−2) = 0
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and hence, the associated unramified stabilization is weakly ordinary. One can
combine the results of Kim (cf. [Kim03]) and Jacquet-Shalika (cf. [JS90]) to show
that Sym3 V has a Shalika model (see Section 8 of [GR14] for a detailed discussion).
Thus, our construction yields a p-adic L-function for every critical point of the
symmetric cube of a p-ordinary modular form of level Γ1(N), p - N , which is not
of CM-type.

The same arguments carry over to higher odd symmetric powers as well. Assume
that Π = Sym2r+1 V is a cuspidal automorphic representation of GL2(r+1)(Q).
Again, this implies that Π is cohomological (cf. [RS08]) and as in the symmetric
cube case, one can show that Π is weakly ordinary if f is ordinary at p. Accordingly,
Banerjee and Raghuram show in [BR16] that the symmetric powers of the motive
associated to f are nearly p-ordinary, if f is p-ordinary.

If we would know that Π has a Shalika model, our construction would yield
a p-adic L-function for every critical point of Π. By Proposition 8.1.4 of [GR14]

Π has a Shalika model if Sym4(r−a) V is an isobaric sum of cuspidal automorphic
representations for all 0 ≤ a ≤ r.
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