Scalable Block Ciphers Based on Feistel-like Structure

Valér Čanda and Tran van Trung
Institute for Experimental Mathematics, University of Essen
Ellemstrasse 29, 45326 Essen, Germany
\{valer, trung\}@exp-math.uni-essen.de

Abstract

Scalability of symmetric ciphers is still not as natural as for public-key cryptosystems. Most of the current block ciphers do not support freely variable block and key lengths, nor do they allow free memory-speed balancing. In this work we discuss possible approaches to a scalable block cipher design and propose a new scalable scheme related to the Feistel structure. We analyze the desirable properties of the used building blocks and present one of their possible implementation. Besides a security discussion of the cipher we present some experimental results regarding its statistical properties and efficiency. The nice property of the new cryptosystem is its unlimited scalability and the possibility of a memory-speed tradeoff by a controlled security level.

1 Introduction

Scalability is a desirable property of cryptographic primitives. Mathematically well-founded scalable cryptographic primitives are useful not only because they enable us to adjust an encryption configuration according to security and performance requirements for a specific application, but also because they make it possible to adapt our cryptosystems to a new situation in the event of a breakthrough in computer design or a progress in mathematical theory.

An algorithm is called scalable, if its basic parameters are alterable by design. For instance, a block cipher is scalable, if its block length n and key length k can be adjusted without redefining or extending the cipher. It is particularly important that the security properties of a cryptographic algorithm change in some predictable and naturally expectable way, when one of its parameters has been altered. For example, when varying the block length of an iterative cipher, we should be able to tell easily how many rounds need to be performed to achieve a specified security level.

While most public key cryptosystems are scalable intrinsically \(^1\), the scalability of symmetric block ciphers is not that common. The first modern block ciphers like DES were not scalable at all. The candidates for the recent cryptographic standard AES were already required to support three different key lengths and some of them (e.g., RC6 [5] or Rijndael [6]) supported even multiple block lengths, but this is still not what we understand by full scalability.

According to their scalability, block ciphers can be classified into the following four categories:

- **strongly scalable** - ciphers which by design support any combination of block length n and key length k (both in bits),
- **fully scalable** - ciphers with some minor restrictions regarding the format of n and k (e.g., n must be a power of 2 and k must be a multiple of 32) but without upper limits for these values,
- **partially scalable** - ciphers supporting only a small finite set of possible values for n and k.
- **not scalable** - ciphers where n and k are fixed by design.

Most of the AES candidates are only partially scalable ciphers. We think that in the future, block ciphers will need to be scalable.

\(^1\)For example, the key length of RSA can be increased simply by choosing longer primes p and q.
cipher design will be moving towards full scalability. Strongly scalable ciphers might be at least of academic interest, even if there is no practical need for them.

Full scalability is especially relevant for a software implementation, because only a generic software implementation of a scalable algorithm can exploit all its capabilities. Hence, it is particularly important to design scalability in such a way that it can be effectively implemented in software. Hardware solutions are usually more restricted because of the hard-wired algorithms and limited resources (e.g. smart cards) and can therefore usually implement only a constrained, fast version of an otherwise fully scalable algorithm.

In what follows we first discuss the general approaches to a scalable cipher design. Then we propose our general scalable scheme which will lead us, after some analysis, to a concrete scalable cipher. Our cipher example is more software-oriented but the same idea might be implemented in a more hardware-suitable way as well. At the end of the paper we present some experimental results regarding the security and efficiency of our cipher.

2 Scalability Approaches by Block Ciphers

2.1 Scalable Key Length

Iterative block ciphers usually use a main key for generating a sequence of round keys and, possibly, some key-dependent tables. Non-iterative block ciphers based on some specific mathematical objects (e.g. permutations, polynomials, bases, etc.) attempt to generate the appropriate randomly looking objects depend on the key. In both cases the key expansion algorithm is actually a simple pseudo random number generator which tries to make all key-dependent components of the cipher depending on as many bits of the main key as possible.

Flexible key expansion algorithms, like the one of RC6, support variable lengths of the main key by design. In some of them it is necessary to generate more round keys (and therefore execute more rounds) if we want to incorporate a longer main key with the same quality. In general, it is possible to create a generic key expansion algorithm with parameters \(k \) and \(k' \geq k \) which expands an input sequence of \(k \) bits (the main key) to a unique randomly looking sequence of \(k' \) bits (the round key material). Consequently, it is also possible to separate the key expansion algorithm from the encryption algorithm. Choosing an arbitrary combination of these two algorithms is not very advantageous if we want to implement a cryptographic standard like AES, because simplicity and portability are more important than versatility in this case. The separation, however, might be useful for some high-security applications. For example, pre-computation attacks become much harder when the communicating parties settle on one of many possible encryption configurations just before transmission.

![Scaling Approaches](image)

Figure 1: Scaling Approaches

2.2 Scalable Block Length

Scalability of block length \(n \) can be achieved either through a modification of the size of the basic operations (primitives) used, or through a modification of the encryption scheme. A 64-bit Feistel cipher in Figure 1A, whose round operates on two 32-bit sub-blocks, might be scaled to a 128-bit version either by "doubling the size" of the round function from \(f : \{0, 1\}^{32} \rightarrow \{0, 1\}^{32} \) to \(F : \{0, 1\}^{64} \rightarrow \{0, 1\}^{64} \), as shown in Figure 1B, or by doubling the number of processed sub-blocks from 2 to 4 (Figure 1C).

In either case the way of scaling does not automatically ensure that the bigger version of the cipher will have security properties equivalent to the original ones. In general, scalability through the primitives is more probable to retain equivalent security properties than scalability through the scheme. For example, if our 64-bit cipher used only three simple mathematical primitives, say, an \(8 \times 8 \) bit key-dependent random S-box, addition modulo \(2^{16} \) and 16-bit bitwise XOR, then the 128-bit version using the same structure with double-length operations (i.e. \(16 \times 16 \) bit S-box, addition modulo \(2^{32} \) and 32-bit XOR) will very probably have the
expected security properties.

Ensuring the compatibility of security properties by scaling through the structure is less trivial. One can, for example, define a chain of structures \(s_1, s_2, s_3, \ldots \) and show by induction that if \(s_i \) has some security properties (e.g., the avalanche property), then \(s_{i+1} \) has these properties as well. If this induction works for all important security properties, the chain of structures can be used for cipher scaling. It is usually not enough to change only the “width” of the structure (e.g., number of subblocks). The “depth” of the structure (e.g., number of rounds or complexity of a round) also has to be increased to retain equivalent security properties.

Even if scaling through the primitives is more straightforward, scalability through the scheme is usually more practical for larger cipher versions. For example, if we wish to create a 256-bit version of the Feistel cipher in the same way as described above, we would fail to implement a \(32 \times 32 \) bit S-box. The reason for our problems is the exponentially growing complexity of large non-linear primitives. Scaling through the scheme is more practicable in that case.

Of course, combinations of the mentioned two scaling approaches are also possible. It might be more convenient in some applications to use “a somewhat larger” structure together with “a bit bigger” primitives, rather than a completely doubled structure or completely doubled primitives. A memory-time tradeoff with a constant security level might be achieved in this way.

3 Feistel Networks

Many 64-bit iterative block ciphers (e.g., Lucifer, DES, FEAL, LOKI, GOST, etc.) are based on the Feistel network (FN) because of its simplicity and guaranteed self-invertibility. When we denote the block length of a cipher by \(n \), the round function of an FN utilizes a function of the form \(f : \{0,1\}^m \to \{0,1\}^m \), where \(m = \frac{n}{2} \) (see e.g., Figure 1A). As the block length of an FN can not be easily scaled through the primitives\(^2\), the classical FN is not very suitable for constructing ciphers with block length \(n > 64 \). For that reason some of the AES candidates introduced the extended Feistel networks (EFN). These modified structures use four equally-sized sub-blocks and an \(\frac{n}{2} \)-bit function \(f \). Even if EFN were originally not constructed to provide full scalability, a generalization of the number of their sub-blocks can be used for scaling the block length. For instance, when using a fixed \(f : \{0,1\}^m \to \{0,1\}^m \), the schemes of Cast256 and Mars can be principally scaled to any blocklengths of the form \(n = s \cdot m \), \(s \in \mathbb{N} \), and the RC6 scheme can be scaled to any \(n = s \cdot m \), \(s \) even. This is a typical scaling through the structure. Unfortunately, we are aware of no papers discussing either the cryptographic properties of EFN with \(s > 4 \) in general, or presenting concrete scalable block ciphers based on these structures. General properties of EFN with \(s = 4 \) based on an ideal \(f \) were analyzed in [1].

Another generalization of the Feistel structure are the so-called Unbalanced Feistel Networks (UFN) introduced in [2]. This generalization works with two sub-blocks of different lengths, i.e. the original Feistel structure (Figure 3A) processing two \(\frac{n}{2} \)-bit halves is generalized to a structure with two input blocks of lengths \(s \) and \(t \) bits respectively (\(n = s + t \)).

Such a structure is called an \(s \)-on-\(t \) UFN. The \(s \)-bit sub-block is called the source and the \(t \)-bit sub-block the target. A UFN is called source heavy when \(s > t \) (Figure 3B) and target heavy when \(t > s \).

\(^2\)Doubling the “size” of \(f \) while preserving its cryptographic complexity requires exponentially more resources. Hence, designing and implementing a good \(f : \{0,1\}^{64} \to \{0,1\}^{64} \), required for \(n = 128 \), is much harder than constructing \(f : \{0,1\}^{32} \to \{0,1\}^{32} \), used for \(n = 64 \).
(Figure 3C). The special case of UFN for $s = t$ is the classical FN. A UFN is said to be homogenous if its round function is identical in each round (except for the round keys) and heterogeneous otherwise.

Even if the main goal for introducing UFN was generalizing the FN rather than implementing scalability, these structures can be used to provide fully scalable block length as well. For instance, the block cipher BEAR [3], based on UFN, provides full scalability by admitting variable s in its first source-heavy round. BEAR and the other two ciphers presented in [3] are, however, not conventional block ciphers, because they are built from components that must be cryptographically secure themselves. Such a design (a meta-cipher) is in fact a conversion from one cryptographic primitive into another. Besides the three meta-ciphers introduced in [3] we know of no other fully scalable block cipher proposals based on UFN.

4 Scalable Feistel-like Cipher

4.1 The Encryption Scheme

Our scalable cipher design, presented in this section, was initially motivated by symmetric encryption based on group bases (see e.g. [8]). It can, however, be described even without the knowledge of that theory, because it is similar to the Feistel networks.

Let n denote the block length of a cipher, k the key length, and r the number of rounds. An additional characteristic parameter $m \leq 2^k$ of our encryption scheme will be called the segment length. A consecutive sequence of m bits $x_{c-m+1}, \ldots, x_{c-m+1}$, $c \in \mathbb{N}$, of a binary vector x will be called a segment. The leftmost segment of a binary vector x will be denoted by x_L, and the rest of the vector by x_R. One round of our encryption scheme is displayed in Figure 4. The binary operations \circ, \oplus, and \boxplus are not particularly important at this point. The scheme will work with any three invertible binary operations.

The round works as follows. An n-bit input x is split into two parts x_L and x_R. First, a round key k_i is added to x_R and the resulting value $x'_R = x_R \oplus k_i$ is fed into the hash function h which produces an m-bit output. The output of h is added to x_L and the resulting m-bit value $x'_L = x_L \oplus h(x'_R)$ is transformed by a key-dependent random S-box S into a unique $(n - m)$-bit value. The mapping $S : \{0, 1\}^m \rightarrow \{0, 1\}^m$ is realized by a table of uniformly distributed random $(n - m)$-bit values s_i, thus, a computation of $S(i)$ requires a single table lookup $S(i) = s_i$. The output of S is added to x'_R which results in $y'_R = x'_R \oplus S(x'_L)$. The x'_L is furthermore transformed by a permutation S-box P which maps it on a unique m-bit value y'_L. The mapping $P : \{0, 1\}^m \rightarrow \{0, 1\}^m$ is represented by a table of 2^m key-dependent random m-bit values p_i, such that $p_i \neq p_j$ for all $i \neq j$. (P is in fact a permutation of 2^m elements.) The intermediate output of the transformations above is an n-bit vector $y' = y'_L \boxplus y'_R$. The final output y of one round is obtained by a ξ-bit rotation of y', i.e. $y = \operatorname{rot}_\xi(y')$.

Given a fixed pair of tables (S, P) we will denote the mapping performed by one round as $y = R(S, P)(x, k_i)$. An encryption $y = c_R(x)$ is performed by r subsequent executions of a round, i.e. $x_0 = x$, $x_i = R(S, P)(x_{i-1}, k_i)$, for $i = 1, \ldots, r$, and $y = x_r$. The rotation by ξ bits performed at the end of the last round can possibly be omitted (or undone) because it does not contribute to the cryptographic strength of the cipher.

A decryption operation $x = d_R(y)$ can be performed by executing r inverse rounds: $x_0 = y$, $x_i = R_{inv}(S, P)(x_{i-1}, k_i)$, for $i = r, \ldots, 1$, and $x = x_0$, where $R_{inv}(S, P)(y, k_i)$ denotes the sequence of operations: $y'_R = y'_R \boxplus y'_L = \operatorname{rot}_{-\xi}(y'_L); x'_R = P^{-1}(y'_L); x'_L = x'_L \oplus h(x'_R); x_R = x'_R \oplus k_i$; and $x = x_L \boxplus x_R$. The binary operations \circ, \oplus and \boxplus denote the operations inverse to \circ, \oplus, and \boxplus respectively.

2This is not a cryptographic hash function. It is just an ordinary unkeyed hash function like CRC or similar check-sums.
Figure 5: An UFN Related to Our Scheme

Obviously, the encryption scheme is pretty similar to a heterogenous UFN as demonstrated in Figure 5. One round of our cipher corresponds to two rounds of an UFN - the first one source-heavy and the second one target-heavy. The hash function h corresponds to \(f_1 \) and the S-box \(S \) corresponds to \(f_2 \), but unlike \(f_1 \) and \(f_2 \) the mappings \(h \) and \(S \) do not (directly) depend on the round keys. Another specific attribute of our scheme are the operations \(P \) and \(\xi \) which are not present in the UFN. These two elements are implied by the structure of an extended group basis. For more information about how our structure has been derived from group bases we refer to Section 6 of [9].

We would like to stress the fact that the S-boxes \(S \) and \(P \), used in our design, are large, pseudorandom, and key-dependent. This approach does not only increase the adversary’s uncertainty about the round function, but it also makes it harder to find strong differentials and input-output sums that could be used for differential and linear cryptanalysis respectively. Moreover, a random key-dependent S-box is most probable to be resistant against all attacks, including new ones that might be invented in the future. A more detailed discussion on usage of key-dependent S-boxes can be found, for instance, in [7] and [11].

4.3 Key Expansion Algorithm

The task of the key expansion algorithm of our cipher is generating randomly-looking objects \(S, P \), and \(k_1 \) from a main key \(K \). The PRNG used for that purpose should accept seeds of variable length and should produce a pseudorandom number (PRN) sequence with very strong statistical properties. The larger the amount of the expanded key material needed (this amount depends mainly on the value of \(m \)), the more important is the quality of the PRNG. The maximum seed length and period length of the generator delimit the maximum achievable key space. The efficiency of the generator is important for providing short key-setup delays.

The criteria above suggest, on one hand, not using very simple generators (e.g., linear congruential generator) because of the security requirements and, on the other hand, not using very computationally intensive generators (e.g., Blum-Blum-Shub generator) because of efficiency. Supposing the encryption scheme itself is secure (i.e., it is not possible to reveal parts of \(S, P \) or \(k_1 \) by less than \(\min(2^k, 2^n) \) trial encryptions), the PRNG does not necessarily need to be cryptographically secure. Note that the output of the PRNG is hidden within the scheme and, thus, the generator can not be attacked directly.

A generator suitable for our key expansion is
the lagged Fibonacci generator with Lüscher's approach [12]. It not only generates a PRN sequence with very good statistical properties, but it also enables a scalable seed length. The period of the generated sequence is very long. For instance, the combination of lags (37, 100) and word length 32 bits guarantees that the period of the sequence will be \(2^{33}\) and seeds of length up to 3200 bits can be used. These values can be further improved by changing the lags [12].

To strictly prevent any hypothetical attacks based on a reconstruction of the secret PRN sequence, one might use a cryptographically secure PRNG as well. Nevertheless, cryptographically secure generators are significantly slower than the regular generators while providing (statistically seen) "equally good" output. Moreover, cryptographically secure generators are usually based on some other cryptographic primitives (e.g. block ciphers etc.) that are supposed to be cryptographically secure themselves. Hence, usage of such a PRNG would make our cipher just a conversion from one cryptographic primitive to another.

As we want to provide for practical (rather than provable) security, we suggest using a statistically strong (rather than cryptographically strong) PRNG. If necessary, the reconstruction of the PRN sequence can be hindered by discarding some parts of the sequence (e.g. by using only the most significant byte of every 32-bit word provided by the lagged Fibonacci generator). Nevertheless, when performing a sufficient number of rounds, no parts of the PRN sequence can be revealed anyway.

4.4 Function \(h\)

The purpose of the function \(h\) is to compute an \(m\)-bit hash value for an \((n - m)\)-bit input vector \(x\). The output of \(h\) should be balanced, i.e. when computing \(h(x)\) for all possible inputs \(x\), every possible output value should appear roughly \(\frac{2^n}{m}\) times. Furthermore, \(h\) should be highly non-linear (see e.g. [10]) and the output of the composed function \(h(x_E \oplus k_t)\) should not be predictable without the knowledge of \(k_t\).

The simplest method for software implementation of \(h\) is chaining of a function \(p : \{0, 1\}^m \rightarrow \{0, 1\}^m\) as shown in Figure 6A. The binary operation \(\oplus\) used here should be an effectively computable group operation on \(\{0, 1\}^m\), like \(m\)-bit XOR, addition mod \(2^m\), etc. The function \(p\) must be bijective to ensure that all \(2^m\) possible output values appears equally frequently. The strongest candidate for \(p\) is a key-dependent random permutation of \(2^m\) elements, because it makes the output of \(h\) unpredictable without knowledge of the key. (Note that the table \(P\) might be reused for that purpose.)

However, the chaining displayed in Figure 6A is not very efficient. Especially for small \(m\) it needs too many serial steps to compute the hash. Significantly faster implementations of \(h\) are possible with more parallelism. A tree structure like in Figure 6B is most suitable for hardware. A two-level chaining shown in Figure 6C can perform well in software. In the first step one computes an intermediate \(m'\)-bit hash value using the usual chaining. The constant \(m'\) should be chosen as the maximum word length which supports an effective execution of \(\oplus\) on the used platform (usually 32 bits). In the second step one reduces the \(m'\)-bit intermediate hash to the final \(m\)-bit value. When \(m = 8\) and \(m' = 32\), say, the word-wise computation of \(h\) can be about four times faster than the byte-wise version.

Among the fastest candidates for the bijection \(p' : \{0, 1\}^{m'} \rightarrow \{0, 1\}^m\) are some simple non-linear functions like:

- \(f(x) = \text{rot}_c(x)\), where \(c\) is relatively prime to \(m'\)
\[f(x) = cx \pmod{2^m}, \] where \(c \) is an \(m' \)-bit prime.

\[f(x) = x(2x + 1) \pmod{2^m}, \] this function is used in RC6, for example.

Because of the secret value \(k_i \) (see e.g. Figure 4) it is not possible to directly manipulate the output of \(h \) by varying \(x_R \). Nevertheless, the designs A and B presented in Figure 6 make it at least possible to achieve all \(2^m \) possible outputs of \(h \) with just \(2^{m'} \) different inputs \(x_R \). A similar manipulation (with \(2^m \) instead of \(2^{m'} \) inputs) is possible in the design C. Although this property of \(h \) does not seem to be particularly useful for an attack\(^4\), it can be, if desired, easily avoided e.g. by using a construction based on two independent sub-hashes shown in Figure 6D. For instance, when \(h_1 \) is computed according to Figure 6C and \(h_2 \) is defined as:

\[h_2(x) = h_1(\text{mix}_2(x)), \]

where \(c \) is relatively prime to \(m' \), any contrived manipulation of the output \(h(x) = h_1(x) \oplus h_2(x) \) becomes much harder.

4.5 Binary Operations

Until now there have been four binary operations used in our cipher:

- \(\odot \), acting on \(\{0, 1\}^{n-m} \), used for the round-key addition,
- \(\otimes \), acting on \(\{0, 1\}^m \), used for the chaining in \(h \),
- \(\oplus \), acting on \(\{0, 1\}^m \), used for adding the output of \(h \) to \(x_L \), and
- \(\boxplus \), acting on \(\{0, 1\}^{n-m} \), used for adding the output of \(S \) to \(x'_R \).

These operations must be efficiently computable on a given platform for all allowed combinations of \(n, m, \) and \(m' \). Furthermore, the operations \(\odot, \otimes, \) and \(\boxplus \) must be easily invertible. For example, there must exist an efficiently computable binary operation \(\boxplus \) such that:

\[a \boxplus b \boxplus b = a \]

for all \(a, b \in \{0, 1\}^m \).

\(^4\) It would be much more useful for an adversary if he could minimize the number of different outputs of \(h \) when varying \(x_R \), because that would decimate the randomizing effect of \(S \). Minimizing the number of outputs is the opposite of what the adversary wants.

It has been shown in [4] that using operations from incompatible mathematical groups is advantageous for the quality of a cipher. Whenever an output of a group operation \(o_1 \) is used as an input into operation \(o_2 \), the two operations should not be associative and distributive [4].

In accordance with the requirements above we suggest alternating XOR with an integer addition mod \(2^m \) in the following way:

- \(\odot \) - bit-wise XOR
- \(\otimes \) - integer addition (mod \(2^m \))
- \(\oplus \) - bit-wise XOR
- \(\boxplus \) - word-wise addition (mod \(2^m \)) of two vectors

The binary XOR and the modular + are included in the instruction sets of virtually all processors and can be thus performed very efficiently on any platform. The operations \(\odot \) and \(\boxplus \) process their operands as arrays of \(m' \)-bit words. This improves the speed in comparison with a segment-wise processing and, in case of \(\boxplus \), it also improves the cryptographic properties. An \(m' \)-bit addition \((m' > m)\) creates more complex dependencies between the input and output bits than an \(m \)-bit addition. Such a word-wise processing of vectors can either be performed directly by a processor (e.g. using the MMX instruction set of the Pentium CPU family), or else, it can be easily implemented in software with a simple loop.

4.6 Bit Rotation

The purpose of the bit rotation at the end of a round is to ensure that in different rounds a segment of the encrypted \(n \)-bit vector is processed in different ways. Because of the rotation a particular segment of the plaintext is acting in some rounds as \(x_L \), in the other rounds as a part of \(x_R \), and is always influenced by a different columns of the random table \(S \). The number of different ways in which an input segment can be transformed into an output segment is significantly increased in this manner.

In order to maximize this effect, the value \(\xi \) should be relatively prime to \(n \). In terms of cycles (as discussed e.g. in [2]) this will make our scheme a prime network. Furthermore, to improve...
the diffusion of the word-wise operation \boxplus, ξ should be roughly equal to $\frac{n}{m}$ and should be relatively prime to m'. That will ensure that every bit of the input will alternately appear on both lower-order and higher-order positions within different m'-bit words. These regular bit exchanges will create more complex dependencies between the bits, because without them the modular addition used in \boxplus would only spread the information within every m'-bit word from the lower order bits to the higher order bits, but not vice-versa.

When supposing a fixed m' for a given platform, we can make a universal suggestion that works fine for all usual values of n. For instance, when $m' = 32$ and n is even $\xi = 17$ is a suitable rotation length. Analogously, $\xi = 31$ might be used when $m' = 64$.

4.7 Cipher Example

In Appendix A we present a C code sample of a fully scalable cipher based on our scheme. The building blocks of the cipher are implemented according to the discussion in Sections 4.3 to 4.6. The key expansion algorithm is based on the lagged Fibonacci generator with L{"u}scher’s approach (Sec. 4.3), the hash function based on Figure 6C uses p' of the form $p'(x) = c \cdot x \mod 2^{m'}$, and the binary operations are implemented according to Section 4.5. The values of the constants m' and ξ are 32 and 17 bits respectively.

5 Security Considerations

The most important question regarding security of our encryption scheme is the number of rounds that need to be executed for a given pair (n, m) in order to ensure practical security. We consider the cipher as practically secure when the number of trial encryptions needed to reconstruct the decryption function is equal or larger than the minimum of the following two values: the number of all possible plaintexts and the number of all possible keys. We attempt to find an answer to this question in two ways - an analytical and an experimental one.

5.1 Analytical Approach

Referring to Figure 4, we will now analyze the properties of our encryption scheme based on statistically strong components. Let us suppose that each of the 2^m possible outputs of h is produced with the same probability. An h based on Figure 6 meets this requirement whenever the used function p (resp. p') is a bijection. Let us furthermore suppose that S produces a random $(n - m)$-bit vector for each of its possible inputs, and P produces a unique random m-bit vector for each of its possible inputs. S and P meet these requirements with very high probability when they have been generated by a statistically strong PRNG. On the basis of these assumptions, the sum $x_L \oplus h(x_R')$ takes on every possible value with probability $\frac{1}{2^m}$ and, consequently, both y_L and y_R will change in one of 2^m possible ways randomly, whenever either x_L or x_R have changed. From a statistical point of view, the transformations performed by different rounds of our cipher can be considered as independent, because the round keys k_i are generated at random, and the operation \boxplus is incompatible with both \boxplus and \boxplus. Consequently, the number of different random ways in which an input x can be modified into an output y by r rounds is 2^{rm}. To reconstruct a mapping consisting of 2^{rm} point-wise independent random pairs of input and output values one needs to encrypt 2^{rm} different inputs. This number is larger than the number of all possible inputs when $r \geq \frac{n}{m}$. It follows that $\frac{n}{m}$ is the minimal practically secure number of rounds. When $k < n$, the complexity $O(2^{rm})$ must only be greater than the complexity of an exhaustive key search $O(2^r)$ and, hence, the minimal practically secure number of rounds is $\frac{n}{m}$ in that case. It follows that at least $\min(\left\lceil \frac{m}{2^m} \right\rceil, \left\lceil \frac{m}{2^m} \right\rceil)$ rounds should be executed for a given configuration (n, m, k).

The analysis above is based on assumptions which might not always be fulfilled. For instance, even a strong PRNG can sometimes generate an array S whose rows S_i and S_j are equal for some i and j. A cipher using such an S can not ensure 2^n possible differences between x_R and y_R' in every round and, hence, should perform more than just $\min(\left\lceil \frac{m}{2^m} \right\rceil, \left\lceil \frac{m}{2^m} \rceil)$ rounds. Even though the probability of generating such an unfortunate S is very low for typical values of n and m (e.g. 0.25×10^{-31} for $n = 128$, $m = 8$, [9]), we suggest performing one additional round5 to provide a certain security.

5 Note that the cryptographic contribution of this one additional round in our cipher is at least equal to a contribution of two additional rounds in a UFN (Fig. 5).
5.2 Statistical Approach

Statistical analysis based on randomness testing is another technique for evaluating the quality of a block cipher (see e.g. [13]). We have used this experimental approach for evaluating the secure number of rounds. Hereby we encrypted a long aperiodic sequence, once without and once with a small difference \(\Delta \) added to every block. Then, we measured the randomness of differences between the two resulting ciphertexts (Figure 7).

This approach statistically simulates a differential analysis. We repeated the experiment for several different keys and differences. The randomness of every output was measured by the DieHard battery of randomness tests [14] and classified as passed, or suspect. Because every sequence of uniformly distributed random bits should appear with the same probability, even a perfect PRNG sometimes generates a sequence which “fails” a randomness test. In the particular case of DieHard test suite, on average, 0.0023 of the sub-tests will falsely suspect a sequence to be “not random”, even if it were. The rate of such false suspicions will stay between 0.0006 and 0.0040 for virtually all strong PRN sequences. The graph in Figure 8 shows the dependence between the number of rounds and the probability of producing a suspect result.

It is obvious that the probability sinks exponentially with the number of rounds and after a specific number of rounds it keeps oscillating around 0.0023. The curves in the graph show, for instance, that the configuration \((n = 64, m = 8) \) is statistically secure after four rounds which is about half of the suggested value \(\lfloor \frac{64}{8} \rfloor + 1 \). From the statistical point of view the suggested security margin (twice as many rounds as needed) appears to be robust.

5.3 Adjustability

The analysis in Section 5.1 suggests that the security of our cryptosystem can be adjusted in two different ways:

1. By increasing the number of rounds. This approach does not increase the memory requirements. Security is improved at the cost of speed.

2. By increasing the segment length \(m \). This approach does not slowdown the cipher. Security is improved at the cost of memory.

The experimental results presented in Section 5.2 have confirmed this behavior as well.

Obviously, our cipher enables a tradeoff between security, memory, and speed. Any one of these three characteristics can be improved at the cost of the other two. In this way the cipher can be adjusted for usage in various environments. For instance, when implementing a 64-bit version of our cipher on a smart card, we can use \(m = 8 \) and perform 9 rounds \((9 = \lfloor \frac{64}{8} \rfloor + 1) \). The resulting memory requirements of roughly 2 KB will comfortably fit into the restricted memory space of a smart card. On the other hand, when implementing a 64-bit cipher on a modern PC, we can rather use \(m = 16 \) which ensures the same security with just 5 rounds \((5 = \lfloor \frac{64}{16} \rfloor + 1) \). The resulting memory
requirements of 512 KB which would be too high for a smart card will cause no problems in this case. Beside the full scalability, this is another attractive property of our encryption scheme.

6 Efficiency

The achievable encryption speed substantially depends on the number of performed rounds. This number can be reduced without compromising the security when a larger m is used. However, the size of the S-box as well as permutation P grows exponentially with larger m. For example, we need altogether only 4 KB for the configuration $(n = 128, m = 8)$, 64 KB for $(n = 128, m = 12)$ but already 1 MB for $(n = 128, m = 16)$. One should basically use m as large as possible (i.e. a value which does not cause any implementation problems on a given platform) because of both speed and security. Nevertheless, the combination of $r \geq m \geq \sqrt{n}$ appears to be a reasonable memory-speed tradeoff for most applications.

We have implemented a generic version of our algorithm in C++ and tested the encryption speeds on a Pentium II 350 MHz system. In spite of the fact that our implementation preferred versatility to performance, the achieved throughput of e.g. 3682 KB/s with $(n = 128, m = 12, r = 12)$ would make us a middle class among the AES candidates [15]. We believe that a highly optimized C code written specially for one particular configuration could do much better. A speed up by factor of 2 is thinkable. Some other measured encryption speeds and the corresponding memory requirements are listed in Table 1.

<table>
<thead>
<tr>
<th>Configuration</th>
<th>Throughput KB/s</th>
<th>Memory Req KB</th>
</tr>
</thead>
<tbody>
<tr>
<td>64 8 9</td>
<td>3488</td>
<td>2</td>
</tr>
<tr>
<td>64 12 7</td>
<td>3986</td>
<td>32</td>
</tr>
<tr>
<td>64 16 5</td>
<td>4512</td>
<td>512</td>
</tr>
<tr>
<td>128 8 17</td>
<td>2849</td>
<td>4</td>
</tr>
<tr>
<td>128 12 12</td>
<td>3682</td>
<td>64</td>
</tr>
<tr>
<td>128 16 9</td>
<td>3732</td>
<td>1024</td>
</tr>
<tr>
<td>256 16 11</td>
<td>2248</td>
<td>2048</td>
</tr>
<tr>
<td>512 16 33</td>
<td>1408</td>
<td>4096</td>
</tr>
</tbody>
</table>

Tab. 1. Throughput and Memory Requirements

7 Conclusions

We have discussed the scalability of block ciphers in general and proposed a new scalable scheme for a block cipher design. Our main goal was to keep the proposal general and place the emphasis on the scalability and efficiency of the scheme, rather than to design a concrete standard-like cipher, optimal on all platforms.

Our design is similar to a heterogeneous UFN. We have discussed desired properties of the used building blocks and suggested possible realization which led to a particular fully scalable block cipher - just one of many possible examples. Our encryption scheme not only enables to scale for block and key length, but it also makes it possible to find an appropriate memory-speed-security tradeoff for a particular application.

According to our experimental results, the cipher appears to have robust security properties combined with a sufficient encryption speed. Nevertheless, we believe that many similar scalable schemes can be designed - some of them certainly more effective than ours. With this proposal we wish to stress the need for fully scalable block ciphers and to initiate more discussion on the topic. We hope to see more mathematically well-founded scalable designs in the future.

References

A Source Code Example

This appendix contains core routines of our cipher implemented in C. Complete code in both C and C++ can be found on http://www.exp-math.uni-essen.de/~valer/Iterative/.

```c
/** General definitions *******************************/
#include <stdio.h>
#include <memory>

typedef unsigned char BYTE;
typedef unsigned int BIT;
typedef unsigned long DWORD;
typedef short INT16;
typedef char CHAR;
typedef const char CONSTCHAR;
typedef int INT;

/** Type and machine definitions **************************/
#define CPU_68000 1
#define CPU_80286 2
#define CPU_80386 3
#define CPU_80486 4
#define CPU_80586 5
#define CPU_REG_BYTE 7
#define CPU_REG_WORD 8
#define CPU_REG_SIGNED_BYTE -8
#define CPU_REG_SIGNED_WORD -9

typedef BIT BIT_TYPE; // The special type for fast word operations (16 bits)
typedef BIT_BYTE; // The special type for fast byte operations (8 bits)
typedef BIT SHORT; // The special type for fast short operations (16 bits)

typedef REG BYTE_TYPE; // The special type for fast byte operations (8 bits)
#define REG_BYTE_BYTE 7
#define REG_BYTE_WORD 8
#define REG_BYTE_SIGNED_BYTE -8
#define REG_BYTE_SIGNED_WORD -9

typedef BYTE_BYTE_TYPE; // The special type for fast byte operations (8 bits)
#define BYTE_BYTE_BYTE 7
#define BYTE_BYTE_WORD 8
#define BYTE_BYTE_SIGNED_BYTE -8
#define BYTE_BYTE_SIGNED_WORD -9

typedef SHORT SHORT_TYPE; // The special type for fast short operations (16 bits)
#define SHORT_SHORT_SHORT 7
#define SHORT_SHORT_WORD 8
#define SHORT_SHORT_SIGNED_SHORT -8
#define SHORT_SHORT_SIGNED_WORD -9

typedef REG.RegisterType; // The special type for fast register operations

typedef SHORT SHORT_REGISTER; // The special type for fast register operations

typedef BIT BIT_REGISTER; // The special type for fast register operations

typedef CHAR CHAR_REGISTER; // The special type for fast register operations

/** Global variables ***************************/

/** Encryption routines ***************************/

void forT3MEAN (BYTE *x0, long *reg, long *t1, long *t2); // 3rd Pass
void forT2MEAN (BYTE *x0, long *reg, long *t1, long *t2); // 2nd Pass
void forT1MEAN (BYTE *x0, long *reg, long *t1, long *t2); // 1st Pass
void forT0MEAN (BYTE *x0, long *reg, long *t1, long *t2); // 0th Pass

void forT3MEAN (BYTE *x0, long *reg, long *t1, long *t2) {
    forT3MEAN (x0, reg, t1, t2);
    forT2MEAN (x0, reg, t1, t2);
    forT1MEAN (x0, reg, t1, t2);
    forT0MEAN (x0, reg, t1, t2);
}
```

11