On a Class of Traceability Codes

Tran van Trung and Sosina Martirosyan
Institute for Experimental Mathematics, University of Essen
Ellernstrasse 29, 45326 Essen, Germany
{trung, sosina}@exp-math.uni-essen.de

Abstract

Traceability codes are designed to be used in schemes that protect copyrighted digital data against piracy. The main aim of this paper is to give an answer to a Staddon-Stinson-Wei’s problem of the existence of traceability codes with $q < w^2$ and $b > q$. We provide a large class of these codes constructed by using a new general construction method for q-ary codes.

1 Introduction

Traceability (TA) codes are designed to be used in schemes that protect copyrighted digital data against piracy. An example of such an application in pay-per-view movies is described in Fiat and Tassa [8]. Different notions of “traceability” have been studied by several researchers in recent years, e.g., [3], [4], [5], [8], [9], [10], [11], [12], [13].

In this paper, notation and definitions of traceability codes are adapted from Staddon, Stinson and Wei’s paper [13].

A code C of length n with b codewords and minimum distance d over an alphabet Q with $|Q| = q$ is called an $(n, b, q; d)$-code. If d is not needed, we call C an (n, b, q)-code. A codeword will have the form $x = (x_1, \ldots, x_n)$, where $x_i \in Q$, $1 \leq i \leq n$.

For any subset of codewords $C_0 \subseteq C$, the set of descendants of C_0, denoted $\text{desc}(C_0)$, is defined by

$$\text{desc}(C_0) = \{ x \in Q^n : x_i \in \{a_i : a \in C_0\}, 1 \leq i \leq n \}.$$

For any $x, y \in Q^n$, define $I(x, y) = \{i : x_i = y_i\}$.

Definition 1.1 Suppose C is an (n, b, q)-code and $w \geq 2$ is an integer. C is called a w-TA code provided that, for all subsets $C_i \subseteq C$ of size at most w and all $x \in \text{desc}(C_i)$, there is at least one codeword $y \in C_i$ such that $|I(x, y)| > |I(x, z)|$ for any $z \in C \setminus C_i$.

The following result stated in [4], [5], [13] is useful. We present it here with a simple proof.

Theorem 1.1 Any $(n, b, q; d)$ code with $d > n(1 - 1/w^2)$ is an (n, b, q) w-TA code.

Proof. Let C be an $(n, b, q; d)$ code with $d > n(1 - 1/w^2)$. Set $\alpha = n(1 - 1/w^2)$. Any two codewords $c_1, c_2 \in C$ agree in at most $\beta = n - (\alpha + 1) = n/w^2 - 1$ positions. Let $C' = \{c'_1, \ldots, c'_v\} \subseteq C$ be a subset of size v. For any $u \in \text{desc}(C')$, define $M(u) = \max\{|I(u, c'_i)| : i = 1, \ldots, v\}$. Then $n/v \leq M$. On the
other hand, for any \(c \in C \setminus C' \) we have \(\sum_{c' \in C'} |I(c, c')| \leq v \beta \). Now \(C \) will be a \(v \)-TA code if \(v \beta < n / v \). Thus \(\beta < n / v^2 \), equivalently \(n / v^2 - 1 < n / v^2 \). Hence \(v \leq w \), as desired. \(\square \)

In [13], it is shown that if there exists an \((n, b, q)\) \(w \)-TA code, then \(w < q \). The following theorem [13] is obtained by applying Theorem 1.1 to \(q \)-ary Reed-Solomon codes.

Theorem 1.2 (Staddon, Stinson and Wei) Suppose \(n, q \) and \(w \) are given, with \(q \) a prime power and \(n \leq q + 1 \). Then there exists an \((n, b, q)\) \(w \)-TA code in which \(b = q^{\lfloor n / w^2 \rfloor} \).

In Theorem 1.2, if \(q < w^2 \), then \(b = q \). Thus, as an open problem Staddon, Stinson, and Wei [13], ask the following question: Can we construct \(w \)-TA codes with \(q < w^2 \) and \(b > q \)?

Our aim is to give an answer to the Staddon-Stinson-Wei’s problem. Precisely, we present a general construction method for \(q \)-ary codes with large Hamming distance. Using this method we are able to construct a large class of \(w \)-TA codes with \(q < w^2 \) and \(b > q \), and thus obtain a positive answer to the problem.

2 A Construction of \((n, b, q; d)\) codes

We depict an \((n, b, q; d)\)-code \(C \) as an \(b \times n \) array \(A(C) \) on \(q \) symbols, where each row of the array corresponds to one of the codewords of \(C \). For any \(a \in Q \), define

\[
m_j(a) = |\{ i : A(C)(i, j) = a \}|.
\]

i.e. \(m_j(a) \) is the frequency of \(a \) on the \(j^{th} \) column of \(A(C) \). Define

\[
m(C) = \max_{1 \leq j \leq n, a \in Q} (m_j(a)).
\]

Definition 2.1 Let \(C \) be an \((n, b, q; d)\) code. We say that \(C \) has an \(\sigma \)-resolution if the codewords of \(C \) can be partitioned into \(s \) subsets \(A_1, \ldots, A_s \), where \(|A_i| = \sigma\), for \(i = 1, \ldots, s \), in such a way that each \(A_i \) is a code of minimum distance equal to \(n \), i.e. any two codewords of \(A_i \) agree in no position.

CONSTRUCTION

Let \(C_1 \) be an \((n_1, b_1, q_1; d_1)\) code over an alphabet \(Q_1 \). Let \(C_2 \) be an \((n_2, b_2, q_2; d_2)\) code with a \(\sigma \)-resolution \(A_1, \ldots, A_s \). Suppose \(s \geq m(C_1) \). For each \(a \in Q_1 \) denote by \(C_2(a) \) a copy of \(C_2 \) defined over an alphabet \(Q(a) \) such that \(Q(a_1) \cap Q(a_2) = \emptyset \) if \(a_1 \neq a_2 \). Denote by \(A_1(a) \), \(\ldots, A_s(a) \) a \(\sigma \)-resolution of \(C_2(a) \).

Let \(\text{col}_j(a_1, a_2, \ldots, a_{n_1})^T \) be the \(j^{th} \) column of \(A(C_1) \), \(1 \leq j \leq n_1 \). Let \(a(1), \ldots, a(t) \), say, be \(t \) positions of \(\text{col}_j \) at which symbol \(a \in Q_1 \) appears. Note that \(t \leq m(C_1) \). Now replace \(a \) at position \(a(1) \) by \(A_1(a) \), \(a \) at position \(a(2) \) by \(A_2(a) \), etc., and \(a \) at position \(a(t) \) by \(A_t(a) \). Perform this process for every symbol of \(Q_1 \) and for every column of \(A(C_1) \). The resulting code \(C \) obtained by this replacement has parameters \((n_1 n_2, \sigma b_1, q_1 q_2; n_1 n_2 - (n_1 - d_1)(n_2 - d_2))\).

Obviously, the length and the number of codewords of \(C \) is \(n_1 n_2 \) and \(\sigma b_1 \) respectively. Further, any two codewords \(c_1, c_2 \in C \) agree in at most \((n_1 - d_1)\) positions. After replacement \(c_1 \) and \(c_2 \) correspond to two subsets \(R_1 \) and \(R_2 \) of \(\sigma \) codewords each. Any two
codewords in \(R_1 \) (resp. \(R_2 \)) agree in no position, whereas a codeword from \(R_1 \) and a codeword from \(R_2 \) agree in at most \((n_1 - d_1)(n_2 - d_2)\) positions. Hence the minimum distance of \(C \) is \(n_1 n_2 - (n_1 - d_1)(n_2 - d_2) \), as stated.

Further, if \(q_1 q_2 \geq b_1 \) then \(C \) can be extended to a code \(C^* \) having parameters \((n_1 n_2 + 1, \sigma b_1, q_1 q_2; d)\), where \(d = \min\{n_1 n_2, n_1 n_2 + 1 - (n_1 - d_1)(n_2 - d_2)\}\). Let \(Q = \{a_1, a_2, \ldots, a_{q_1 q_2}\} \) be the alphabet of \(C \) and let \(C_1 = \{c_1, c_2, \ldots, c_{b_1}\} \). By construction, any codeword \(c_i \in C_1 \) corresponds to a subset \(R_i \) of \(\sigma \) codewords. For any \(i = 1, \ldots, b_1 \), we add symbol \(a_i \) to the \((n_1 n_2 + 1)^{th}\) column of each codeword of \(R_i \). This forms a set \(R_i^* \). The collection of all \(R_i^* \) forms an \((n_1 n_2 + 1, \sigma b_1, q_1 q_2; d)\) code \(C^* \) with \(d = \min\{n_1 n_2, n_1 n_2 + 1 - (n_1 - d_1)(n_2 - d_2)\}\). This can be seen as follows. Any two codewords \(x^* \) and \(y^* \) of \(C^* \) belong either to some \(R_i^* \) or to two different \(R_i^* \) and \(R_j^* \). In the first case their distance is \(n_1 n_2 \) because their components agree only at the \((n_1 n_2 + 1)^{th}\) column, and in the second case their distance is at least \(n_1 n_2 + 1 - (n_1 - d_1)(n_2 - d_2) \) because their components at the \((n_1 n_2 + 1)^{th}\) column are distinct.

We record the result of the construction in the following theorem.

Theorem 2.1 Suppose there is an \((n_1, b_1, q_1; d_1)\) code \(C_1 \) and there is an \((n_2, b_2, q_2; d_2)\) code \(C_2 \) with a \(\sigma \)-resolution \(\{A_1, \ldots, A_{b_2}\} \) such that \(s \geq m(C_1) \). Then the following hold.

(i) There is an \((n_1 n_2, \sigma b_1, q_1 q_2; n_1 n_2 - (n_1 - d_1)(n_2 - d_2))\) code \(C \).

(ii) Further, if \(q_1 q_2 \geq b_1 \), then \(C \) can be extended to a code \(C^* \) having parameters \((n_1 n_2 + 1, \sigma b_1, q_1 q_2; d)\), where \(d = \min\{n_1 n_2, n_1 n_2 + 1 - (n_1 - d_1)(n_2 - d_2)\}\).

We illustrate the construction in Theorem 2.1 by the following example.

Example 2.1 Let \(C_1 \) be a \((3, 4, 2; 2)\) code over the alphabet \(Q_1 = \{0, 1\} \) given by

\[
C_1 = \begin{pmatrix}
0 & 0 & 0 \\
0 & 1 & 1 \\
1 & 0 & 1 \\
1 & 1 & 0
\end{pmatrix}
\]

Let \(C_2(0) \) be a \((3, 6, 3; 2)\) code on the alphabet \(\{1, 2, 3\} \) having a 3-resolution \(A_1(0) \) and \(A_2(0) \):

\[
A_1(0) = \begin{pmatrix}
1 & 2 & 3 \\
2 & 3 & 1 \\
3 & 1 & 2
\end{pmatrix}, \quad A_2(0) = \begin{pmatrix}
1 & 3 & 2 \\
2 & 1 & 3 \\
3 & 2 & 1
\end{pmatrix}
\]

Let \(C_2(1) \) be a copy of \(C_2(0) \) on the alphabet \(\{4, 5, 6\} \) with the corresponding 3-resolution

\[
A_1(1) = \begin{pmatrix}
4 & 5 & 6 \\
5 & 6 & 4 \\
6 & 4 & 5
\end{pmatrix}, \quad A_2(1) = \begin{pmatrix}
4 & 6 & 5 \\
5 & 4 & 6 \\
6 & 5 & 4
\end{pmatrix}
\]

Replacing entries of \(A(C_1) \) by \(A_j(\bar{j}) \) gives

\[
A_1(0) \quad A_1(0) \quad A_1(0) \\
A_2(0) \quad A_1(1) \quad A_1(1) \\
A_1(1) \quad A_2(0) \quad A_2(1) \\
A_2(1) \quad A_2(1) \quad A_2(0)
\]
Thus, we obtain a $(9, 12, 6; 8)$ code C. Now, since the condition $q_1 q_2 > b_1$ is satisfied, C can be extended to a $(10, 12, 6; 9)$ code C^*.

$$
\begin{array}{cccccc}
1 & 2 & 3 & 1 & 2 & 3 \\
2 & 3 & 1 & 2 & 3 & 1 \\
3 & 1 & 2 & 3 & 1 & 2 \\
1 & 3 & 2 & 4 & 5 & 6 \\
2 & 1 & 3 & 5 & 6 & 4 \\
3 & 2 & 1 & 6 & 4 & 5 \\
\end{array}
\quad
\begin{array}{cccccc}
1 & 2 & 3 & 1 & 2 & 3 \\
2 & 3 & 1 & 2 & 3 & 1 \\
3 & 1 & 2 & 3 & 1 & 2 \\
1 & 3 & 2 & 4 & 5 & 6 \\
2 & 1 & 3 & 5 & 6 & 4 \\
3 & 2 & 1 & 6 & 4 & 5 \\
\end{array}
$$

$C - C^*$

3 Construction of (n, b, q) w-TA codes with $q < w^2$ and $b > q$

In this section we discuss a concrete application of the above construction. We see that the method is suitable for constructing q-ary codes with large distance, and therefore, by Theorem 1.1, for constructing w-TA codes with large w. The following theorem shows this fact.

Theorem 3.1
(i) Let q_0 be a prime power. If there is a set of at least $(q_0 - 1)$ mutually orthogonal latin squares (MOLS) of order σ, then there is an $(n, b, q; d)$ code with

$$
\begin{align*}
 n &= (q_0 + 1)\sigma^m \\
 b &= q_0^2\sigma^m \\
 q &= q_0\sigma^m \\
 d &= (q_0 + 1)\sigma^m - 1,
\end{align*}
$$

for any positive integer m.

(ii) There is an $(n, b, q; d)$ code with

$$
\begin{align*}
 n &= \underbrace{(\cdots((q_0 + 1) q_1 + 1)q_1 + 1)\cdots q_1 + 1)}_m \\
 b &= q_0^2 q_1^m \\
 q &= q_0 q_1^m \\
 d &= n - 1,
\end{align*}
$$

where $q_1 \geq q_0$ are prime powers and $m \geq 1$ is an integer.

Proof. Take C_0 to be an $OA_1(2, q_0 + 1, q_0)$ orthogonal array A, (see e.g., [6]), i.e. C_0 is a $(q_0 + 1, q_0^2, q_0; q_0)$ extended Reed-Solomon code. The array A has the property that any symbol appears exactly q_0 times in each column. A remark upon MOLS, which are used
here, needs to be made. It is known that any given set of u MOLS M_1, \ldots, M_u can be transformed in such a way that any two rows from different M_i and M_j agree in at most one column. Here, we assume that our MOLS have this property.

(i) Now suppose we have a set of q_0 MOLS M_1, \ldots, M_{q_0} of order σ. In the case that we only have $(q_0 - 1)$ MOLS M_1, \ldots, M_{q_0-1}, we will take M_0 to be the $\sigma \times \sigma$ matrix with entries from the σ symbols of the Latin squares such that each symbol appears σ times in exactly one row. In either cases, $M_0, M_1, \ldots, M_{q_0-1}$ together form a σ resolution of a $(\sigma, q_0, \sigma; \sigma - 1)$ code \mathcal{C}. Applying Theorem 2.1 to \mathcal{C} and \mathcal{C} gives a $((q_0 + 1) \sigma, q_0^2 \sigma, q_0 \sigma; (q_0 + 1) \sigma - 1)$ code \mathcal{C}_1. As each symbol of the alphabet appears in each column of $\mathcal{A}(\mathcal{C}_1)$ q_0 times, Theorem 2.1 can be applied to \mathcal{C}_1 and \mathcal{C} again. This recursive procedure gives rise to codes in (i).

(ii) If $\sigma = q_1$ ($\geq q_0$) is a prime power, then there are $q_1 - 1$ MOLS M_1, \ldots, M_{q_1-1} of order q_1. M_1, \ldots, M_{q_1-1} and M_0 together form a code \mathcal{C} with a q_1 resolution. Extend \mathcal{C}_1 in (i) to a code \mathcal{C}_1^* by adding one more column, as shown in Theorem 2.1. Observe that in \mathcal{C}_1^* a symbol appears q_1 or q_0 times in each column. Thus, we can apply Theorem 2.1 to \mathcal{C}_1^* and \mathcal{C}. Therefore, if at each step the obtained code is extended before applying Theorem 2.1, the resulting code after m steps will have parameters given in (ii).

The following theorem shows that codes constructed in Theorem 3.1, in fact, provide a large class of w-TA codes with $q < w^2$ and $b > q$.

Theorem 3.2 Let q_0 and q_1 be prime powers such that $q_1 \geq q_0$.

(i) Suppose $\sqrt{q_0 q_1^2} + 1 < \lfloor \sqrt{q_0 q_1} + q_1 + 1 \rfloor$. Then for any integer n with

$$\sqrt{q_0 q_1^2} + 1 < \lfloor \sqrt{n} \rfloor \leq \lfloor \sqrt{q_0 q_1} + q_1 + 1 \rfloor$$

there exists an (n, b, q) w-TA code with $q < w^2$ and $b > q$, where

$$b = q_0^2 q_1$$
$$q = q_0 q_1$$
$$w = \lfloor \sqrt{n} \rfloor - 1.$$

(ii) For any integer $m \geq 2$ and for any integer n with

$$\sqrt{q_0 q_1^m} + 1 < \lfloor \sqrt{n} \rfloor \leq \lfloor \sqrt{q_0 q_1^m} + q_1^m + \cdots + q_1 + 1 \rfloor$$

there exists an (n, b, q) w-TA code with $q < w^2$ and $b > q$, where

$$b = q_0^2 q_1^m$$
$$q = q_0 q_1^m$$
$$w = \lfloor \sqrt{n} \rfloor - 1.$$

Proof. First, recall that the parameters $(N, b, q; d)$ of a code \mathcal{C}^* in Theorem 3.1 (ii) are $N = q_0 q_1^m + q_1^m + q_1^{m-1} + \cdots + q_1 + 1$, $b = q_0^2 q_1^m$, $q = q_0 q_1^m$, and $d = N - 1$, where $m \geq 1$ is an integer. We remark that if \mathcal{C}^* is shortened, the resulting code with length $n \leq N$ always have minimum distance $d = n - 1$.

Let $(n, b, q; n - 1)$ be the parameters of a shortened code \mathcal{C} of \mathcal{C}^* (the case $\mathcal{C} = \mathcal{C}^*$ is also included). So, $n \leq N$. Let $w = \lfloor \sqrt{n} \rfloor - 1$. By Theorem 1.1, \mathcal{C} is a w-TA code. The condition $q < w^2$, i.e., $\sqrt{q} < w$, thus becomes $\sqrt{q} < \lfloor \sqrt{n} \rfloor - 1$, equivalently $\sqrt{q} + 1 < \lfloor \sqrt{n} \rfloor$.

5
As $n \leq N$, we have $\sqrt{q} + 1 < \sqrt{n} \leq \sqrt{N}$. Now $q = q_0 q_1^m$, so if $m = 1$, we have the condition $\sqrt{q_0 q_1} + 1 < \sqrt{n} \leq \sqrt{q_0 q_1 + q_1 + 1}$. Thus (i) follows. If $m \geq 2$, we see that the condition $\sqrt{q} + 1 < \sqrt{n}$ is always satisfied. In fact, we only need to verify that $\sqrt{q_0 q_1} + 1 < \sqrt{N}$, i.e., $(\sqrt{q_0 q_1} + 1)^2 < q_0 q_1^m + q_1^m + q_1^{m-1} + \cdots + q_1 + 1$. Simplifying the last inequality yields $4q_0 q_1^{m-2} < (q_1^{m-1} + \cdots + q_1 + 1)^2$, which is satisfied for all integers $q_1 \geq q_0 \geq 2$ and $m \geq 2$. Thus we have (ii). The proof is complete.

Remark 3.1 In the proof of Theorem 3.2 above, we do not use the approximation $\sqrt{q} + 1 < \sqrt{n}$ to show $\sqrt{q} + 1 < \sqrt{N}$ for case $m = 1$. If we used it, we would get an inequality $4q_0 < q_1$. And therefore, we would miss a large number of w-TA codes. In fact, the condition $\sqrt{q_0 q_1} + 1 < \sqrt{q_0 q_1 + q_1 + 1}$, as stated in the theorem, is much stronger.

Example 3.1 Some small w-TA codes of Theorem 3.2 (i) are as follows. A $(10, 12, 6)$ 3-TA code corresponds to $q_0 = 2$ and $q_1 = 3$. This code is also displayed in Example 2.1. For $q_0 = 3$ and $q_1 = 4$ we have a $(17, 36, 12)$ 4-TA code, and for $q_0 = 4$ and $q_1 = 5$ we have a $(26, 80, 20)$ 5-TA code.

Remark 3.2 It is worth to note that the construction method in Theorem 2.1 can produce good q-ary codes. Recall that for any $(n, b, q; d)$ code the Plotkin bound is given by $b(b - 1)d \leq 2n \sum_{i=0}^{b-1} \frac{q^i}{q+1} b_i$, where $b_i = \lceil (b+i)/q \rceil$, see, e.g., [1]. Now consider, for example, the codes in Theorem 3.1 (ii). It is easy to check that if $q_0 = q_1$, these codes meet the Plotkin bound with equality. Moreover, for the three codes mentioned in Example 3.1 we have the following. The $(10, 12, 6; 9)$ code is optimal. The $(17, 36, 12; 16)$ and $(26, 80, 20; 25)$ codes are ‘quasi’ optimal because the maximum value for b derived from the Plotkin bound is 37 in the first case and 81 in the second case.

References

