Asher Auel
Title: Decompositions of rank four vector bundles
Abstract: Throughout the 20th century, the "accidental" equalities of
Dynkin diagrams of small rank have been exploited in various ways to
describe torsors for the corresponding linear algebraic groups over
fields and rings. In the case of A_3=D_3, we will show how this
description can be used to give a hermitian K-theoretic obstruction to
the existence of quotient line bundles of rank four vector bundles on
algebraic varieties.