Two Dimensional Quotient Singularities Deform to Quotient Singularities

Hélène Esnault¹ and Eckart Viehweg²

¹ Université Paris VII and Max-Planck-Institut für Mathematik, Gottfried-Claren-Strasse 26,
D-5300 Bonn 3, Federal Republic of Germany
² Universität – Gesamthochschule – Essen, Fachbereich 6, Mathematik, Universitätsstrasse 2,
D-4300 Essen 1, Federal Republic of Germany

Let \(X_0 \) be a variety over the field \(\mathbb{C} \) of complex numbers, having isolated quotient singularities, and let \(X_s \) be the general fibre of a deformation \(f: X \rightarrow S \) of \(X_0 \). The class of rational singularities is stable under deformations (Elkik [1]) and hence \(X_s \) belongs to this class. Riemenschneider [9] conjectured that isolated quotient singularities have a similar property, i.e. that \(X_s \) has only quotient singularities. Schlessinger [10] proved that, as soon as \(\dim(X_0) \geq 3 \), the isolated singularities are rigid. Therefore, the only case to consider is the two dimensional one. In this note we give an affirmative answer to Riemenschneider's conjecture (2.5).

The known deformations of quotient singularities often exhibit a bewildering complexity. We are grateful to Kurt Behnke for illustrating this to us by several interesting examples; in particular for showing us deformations for which the order of the group of \(X_0 \) is prime to that of \(X_s \). For example, a singularity \(X_0 \), whose minimal desingularization is described by the graph

\[
\begin{array}{c}
\circ & \circ \\
-3 & -2
\end{array}
\]

is cyclic of order 5. However, it can be deformed to quotients of order 3 or order 2 [9].

It is well known (see for example [12]) that for each rational surface singularity one can construct a cyclic covering, which has Gorenstein singularities [the "canonical covering" described in (1.6)]. One approach to study the deformations \(X_s \) would be to try to construct the canonical coverings of \(X_0 \) and \(X_s \) simultaneously. That of \(X_0 \) has rational double points (1.7) and the known deformation theory of rational double points would give a proof of our main result.

For this to work one must show that some power of the dualizing sheaf of \(U_0 = \operatorname{Reg}(X_0) \) has a trivializing section, which can be extended to \(X \). In (3.2) we give an example where the obstructions to extending those sections do not vanish (Marc Levine kindly explained the necessary calculations). This means that we cannot expect the total space \(X \) of our deformation to have only quotient singularities. This can be seen as one of the reasons for the "complexity" of the deformations.
mentioned above. Nevertheless, we try to deform as many sections of powers of the dualizing sheaf \(\omega_X \) as possible (Sect. 2) and we try to study the corresponding cyclic coverings (Sect. 1). The main idea of the proof is explained in (1.9).

We use the usual notations of algebraic geometry as explained in [4], except that the tensor product \((\otimes) \) is always supposed to be the tensor product of modules over the structure sheaf \((\mathcal{O}_{X}) \), and that we denote by \(\mathcal{O}_{X}(D) \) the invertible sheaf associated to a Cartier divisor \(D \) on \(X \). We often write \(\mathcal{M}(D) \) instead of \(\mathcal{M} \otimes \mathcal{O}_{X}(D) \), for an arbitrary sheaf \(\mathcal{M} \), and correspondingly \(\mathcal{M}(\mathcal{M}) = \mathcal{M} \otimes \mathcal{O}_{X}(i \cdot D) \).

Some of the methods used in Sect. 1 can be found in [2, 3, 5, 11]. There, however, they are discussed in the case of a projective smooth variety. We reformulate them for singular varieties and their desingularization, in the hope that they will have general applications in the theory of singularities.

1. Cyclic Coverings of Singularities

Let \(X \) be a normal Cohen-Macaulay variety over \(\mathbb{C} \) and \(\omega_X \) its dualizing sheaf. We are always interested in the affine case, even if we don’t make this assumption. We choose a desingularization \(\delta: Y \to X \), such that the exceptional locus of \(\delta \) is a normal crossing divisor.

(1.1) As is well known [6, p. 50], \(X \) has only rational singularities, if one of the following equivalent conditions is satisfied:

a) \(R^q \delta_\ast \mathcal{O}_Y = 0 \) for \(q > 0 \).

b) \(\delta_\ast \omega_Y = \omega_X \).

We denote the reflexive hull of the \(N \)-th tensor power of the dualizing sheaf by \(\omega_X^{[N]} = (\omega_X^N)^{\vee \vee} \) and we write \(\omega_X^N = \delta^* \omega_Y^N / \text{torsion} \). Of course, \(\omega_X^{[N]} \) is a coherent sheaf.

(1.2) Let \(\mathcal{N} \hookrightarrow \omega_X^{[N]} \) be an inclusion of sheaves, isomorphic outside of the singular locus of \(X \). We assume in the sequel that we have chosen \(\delta \) such that both \(\omega_X^{[N]} \) and \(\mathcal{M} = \delta^* \mathcal{N} / \text{torsion} \) are invertible sheaves. \(\mathcal{N} \) and \(\mathcal{M} \) are generated by their global sections, at least if we choose \(X \) affine. We have the natural inclusions

\[\mathcal{N} \to \delta^* \mathcal{M} \to \omega_X^{[N]} \].

We can find effective divisors \(E \) and \(D \) with support in the exceptional locus of \(\delta \) such that \(\mathcal{M}(D) = \omega_Y(E)^N \).

(1.3) Definition. For \(0 \leq i < N \) we define

\[\mathcal{L}_i^0 = \omega_Y(E)^i \otimes \mathcal{O}_Y \left(- \left[\frac{i \cdot D}{N} \right] \right) \].

For simplicity we write \(\mathcal{L}_i^0 \) instead of \(\mathcal{L}_i^{0[N]} \).
Here \(i \cdot \frac{D}{N} \) is the largest divisor (with coefficients in \(\mathbb{Z} \)) satisfying \(\left \lfloor \frac{i \cdot D}{N} \right \rfloor \preceq \frac{i \cdot D}{N} \). Since
\[
i \cdot (E + F) - \left \lfloor \frac{i \cdot (D + N \cdot F)}{N} \right \rfloor = i \cdot E - \left \lfloor \frac{i \cdot D}{N} \right \rfloor
\]
for all effective divisors \(F \), the sheaf \(\mathcal{L}_i^{(D)} \) does not depend on the divisors chosen.

(1.4) The invertible sheaves \(\mathcal{L}_i^{(D)} \) appear in a natural way in the following construction of a cyclic cover. Assume that \(X \) is affine and let \(i: \mathcal{O}_X \to \mathcal{O} \) be a general section. We take \(s: \mathcal{O}_X \to \mathcal{O}_X^{(D)} \) to be the induced section and \(s^\vee: \mathcal{O}_X^{(D)^\ast} \to \mathcal{O}_X \) to be its dual. We consider the \(\mathcal{O}_X \)-algebra
\[
\mathcal{A} = \bigoplus_{i \geq 0} \mathcal{O}_X^{(D)^\ast}/\langle s^\vee \rangle = \bigoplus_{i \leq 0} \mathcal{O}_X^{(D)^\ast}
\]
and \(X' = \text{Spec}_{\mathcal{O}_X}(\mathcal{A}) \).

By construction the zero divisor of \(s \) is non singular over \(\text{Reg}(X) \). Hence \(X' \) is non singular over \(\text{Reg}(X) \), as one sees writing down local parameters (see also [2]). Moreover \(\mathcal{A} \) is reflexive as an \(\mathcal{O}_X \)-module and therefore \(\mathcal{A} \) and \(X' \) must be normal. Let \(Y' \) be the normalization of \(Y \) in the function field \(\mathbb{C}(X') \) and \(Z \) be a desingularization of \(Y' \). The induced morphisms are denoted by
\[
Z \xrightarrow{\tau} Y' \xrightarrow{\pi} X'
\]
and
\[
Y \xrightarrow{\pi} X.
\]

(1.5) Lemma. Using the notations introduced above one knows:

i) \(Y' \) has rational singularities.

ii) \(\gamma_s^\ast \mathcal{O}_Z = \pi_s^\ast \mathcal{O}_{Y'} = \bigoplus_{i=0}^{N-1} \mathcal{L}_i^{(D)^\ast} \).

iii) \(\gamma_s^\ast \omega_Z = \pi_s^\ast \omega_{Y'} = \bigoplus_{i=0}^{N-1} \omega_Y \otimes \mathcal{L}_i^{(D)^\ast} \).

iv) the higher direct images \(R^i \delta_s^\ast (\omega_Y \otimes \mathcal{L}_i^{(D)^\ast}) = 0 \) for \(q > 0 \) and \(i = 0, \ldots, N-1 \).

v) \(\delta_s^\ast \mathcal{L}_i^{(D)^\ast} \) is reflexive for \(i = 0, \ldots, N-1 \).

vi) \(X' \) has rational singularities if and only if \(X' \) is Cohen-Macaulay and \(\delta_s^\ast (\omega_Y \otimes \mathcal{L}_i^{(D)^\ast}) \) is reflexive for \(i = 0, \ldots, N-1 \).

vii) \(X' \) has rational singularities if and only if \(R^q \delta_s^\ast \mathcal{L}_i^{(D)^\ast} = 0 \) for \(q > 0 \) and \(i = 0, \ldots, N-1 \).

Proof. By construction \(\pi_s^\ast \mathcal{O}_Y \) is the normalization of the \(\mathcal{O}_Y \)-algebra
\[
\mathcal{B} = \bigoplus_{i \geq 0} \mathcal{O}_Y^{(D)^\ast}/\langle \sigma^\vee \rangle
\]
where \(\sigma: \mathcal{O}_Y \to \mathcal{O}_Y^{(D)^\ast} \) is the pullback of \(s \) and \(\sigma^\vee \) its dual. If we choose the effective divisor \(E \), supported in the exceptional locus of \(\delta \), large enough, we have an inclusion \(\omega_Y^{(D)^\ast} \to \omega_Y(E)^\ast \), and thereby we obtain a section
\[
\sigma^\vee: \mathcal{O}_Y \to \omega_Y(E)^\ast = \mathcal{M}(D).
\]
The \mathcal{O}_Y-algebra

$$\mathcal{A} = \bigoplus_{i \geq 0} \omega_Y(E)^{-1/2^{i_1}}$$

is contained in \mathcal{B}, and both algebras are isomorphic over an open subvariety. Since $\pi^*_Y \mathcal{O}_Y$ is normal over \mathcal{O}_Y, it must be the normalization of \mathcal{B} as well.

The section σ' can also be described in the following way: δ^* realizes $H^0(X, \mathcal{N})$ as a subspace of $H^0(Y, \mathcal{M})$. This subspace generates \mathcal{M} and σ' is obtained from a general member of it. Bertini’s theorem [4, III, 10.9] guarantees that the zero divisor of σ' is of the form $B + D$, where B is non-singular, $\mathcal{O}_Y(B) = \mathcal{N}$ and $B + D$ a normal crossing divisor. We may apply [2, Lemme 2], where the normalization of \mathcal{A} is described. Using that

$$\left[\frac{i \cdot (B + D)}{N} \right] = \left[\frac{i \cdot D}{N} \right]$$

we obtain

$$\pi^*_Y \mathcal{O}_Y = \bigoplus_{i = 0}^{N-1} \omega_Y(E)^{-1/2^i} \mathcal{O}_Y \left[\frac{i \cdot D}{N} \right] = \bigoplus_{i = 0}^{N-1} \mathcal{O}_Y^{[2^i]^{-1}}.$$

Since $B + D$ contains the ramification locus of Y' over Y, we know from [11] or [2, Lemme 1], that Y' has at most rational singularities. Especially

$$R^q(\delta' \cdot \tau)_* \mathcal{O}_Z = R^q \delta^*_Y \mathcal{O}_Y$$

and

$$R^q(\delta' \cdot \tau)_* \omega_Z = R^q \delta^*_Y \omega_Y.$$

iii) follows from ii), using the duality for finite maps, saying

$$\pi^*_Y \omega_Y = \text{Hom}_{\mathcal{O}_Y}(\pi^*_Y \mathcal{O}_Y, \omega_Y).$$

iv) is nothing but the Grauert-Riemenschneider vanishing theorem, applied to $\delta' \cdot \tau$, since for $q > 0$

$$0 = \pi^*_Y R^q(\delta' \cdot \tau)_* \omega_Z = \bigoplus_{i = 0}^{N-1} R^q \delta^*_Y (\omega_Y \otimes \mathcal{O}_Y^{[2^i]}).$$

In fact, this also can be obtained from the global vanishing theorem for “integral parts of \mathcal{O}-divisors” [5, 11] as described in [11, (2.3)].

v) just says that $(\delta' \cdot \tau)_* \mathcal{O}_Z = \mathcal{O}_Y$ and – along the same line – vi) and vii) are nothing but translations of the two equivalent descriptions of rational singularities given in (1.1). For example, from duality for finite morphisms we know that

$$\pi^*_Y \omega_X = \text{Hom}_{\mathcal{O}_Y}(\mathcal{A}, \omega_X) = \bigoplus_{i = 0}^{N-1} \omega_X^{[2^i]}$$

and X' has rational singularities if and only if $\pi^*_Z \delta^*_Y \omega_Z = \pi^*_Y \delta^*_Y \omega_Y$. In other words $\delta^*_Y (\mathcal{O}_Y^{[2^i]} \otimes \omega_Y)$ must be equal to $\omega_X^{[2^i]}$ for $i = 0, \ldots, N - 1$.

1.6 Lemma and Definition. Assume that $\dim(X) = 2$ and that X has only rational singularities.

a) For some $v \in \mathbb{N}$ the sheaf $\omega_X^{[v]}$ is invertible. The minimal number $v > 0$ with this property is denoted by $\text{Ind}(X)$, the index of X.

b) Assume that $\text{Ind}(X)$ divides N and choose $\mathcal{N} = \omega_X^{[N]}$. Let X_1 be an affine open subvariety of X. Then the covering $X' \rightarrow X_1$ considered in (1.4) is étale over $\text{Reg}(X_1)$ and X' is Gorenstein. We call X' a (local) canonical covering of X of degree N.

Two Dimensional Quotient Singularities

Proof. a) In [8] it is shown that for each singular point \(p \in X \) the scheme \(U = \text{Spec}(\mathcal{O}_{x,p}) - \{p\} \) has only finitely many non-isomorphic invertible sheaves. Therefore some power of \(\omega_U \) is isomorphic to \(\mathcal{O}_U \).

b) We may assume \(X \) to be affine and \(X' \) to be a covering of \(X \). Then by duality for finite maps \(\pi_* \omega_X = \bigoplus_{i=1}^N \omega_N^i \). It contains the \(\mathcal{A} \)-module generated by \(\omega_N^1 \) and since both are reflexive and isomorphic outside of the singular locus, they must be equal. Therefore \(\omega_X \) is invertible.

Interpreting (1.5) in the situation described in (1.6), we obtain a characterization of quotient singularities:

(1.7) **Proposition.** Let \(X \) be a surface with at most rational singularities. Assume that \(\text{Ind}(X) \) divides \(N \) and choose \(\mathcal{N} = \omega_N^N \). Then the following properties are equivalent:

a) \(X \) has only quotient singularities.

b) All local canonical coverings \(X' \) of \(X \) of degree \(N \) have rational singularities.

c) \(\delta_* (\mathcal{L}^{(N-1)} \otimes \omega_Y) \) is reflexive.

d) The divisors \(E \) and \(D \) (see (1.2)) satisfy \(E \lesssim \frac{D}{N} \) where \(\frac{D}{N} = - \frac{D}{N} \).

Proof. We may assume \(X \) to be affine. The equivalence of a) and b) is well known: If \(X' \) has rational singularities, then it has just rational double points. Those are known to be quotient singularities. Therefore – after replacing \(X \) and \(X' \) by small neighbourhoods of the singularity – we find a non singular cover \(W \) of \(X \), unramified outside of the singular locus. Analytically this is just the universal covering of \(\text{Reg}(X) \) and hence it is a Galois cover. Therefore \(X \) has a quotient singularity.

On the other hand, if \(X \) has quotient singularities, we may assume that \(W \) is a Galois cover, unramified over \(\text{Reg}(X) \). The normalization \(W' \) of \(W \times_X X' \) is a branched cover of \(W \), étale outside of a finite number of points. By “purity of the branch locus” \(W' \) is étale over \(W \) and therefore non singular. By construction of \(W' \) the surface \(X' \) is obtained as a quotient of \(W' \) by a finite group.

From (1.5, vii) we know that b) implies c). The sheaf \(\delta_* \left(\mathcal{L}^{(N-1)} \otimes \omega_Y \right) \) is reflexive if and only if it is equal to \(\omega_N^N \) or if and only if

\[
\omega_N^N = \omega_N^N (N - D - E - D) \subseteq \mathcal{L}^{(N-1)} \otimes \omega_Y = \omega_N^N \left((N-1) \cdot E - \left[\frac{N-1}{N} \cdot D \right] \right).
\]

Comparing the divisors on both sides, we get the equivalence of c) and

\[
E \lesssim D - \left[\frac{N-1}{N} \cdot D \right] = \left\{ \frac{D}{N} \right\}.
\]

Assume now that c) is satisfied. \(\delta_* \pi_* \omega_Y = \delta_* \left(\bigoplus_{i=0}^{N-1} \mathcal{L}^{(0)} \otimes \omega_Y \right) \) is an \(\mathcal{A} = \pi_* \mathcal{O}_X \) module. The invertible \(\mathcal{O}_X \) submodule \(\delta_* \left(\bigoplus_{i=0}^{N-1} \mathcal{L}^{(0)} \otimes \omega_Y \right) \) already generates a reflexive \(\mathcal{A} \) module and therefore \(\delta_* \pi_* \omega_Y \) must be reflexive itself. Moreover, since \(X' \) is a normal surface, it is Cohen-Macaulay, and we can apply (1.5, vii) to obtain b). Of course, one could also use the inequality d) to show that the assumption of (1.5, vii) is satisfied.
(1.8) **Corollary.** Assume that \(X \) is a surface having at most quotient singularities, \(\text{Ind}(X)/N \). Let \(\mathcal{N} \subset \mathcal{O}^{N}_{X} \) be any subsheaf, isomorphic to \(\omega^{(N)}_{X} \) outside of the singular locus of \(X \). Then this inclusion factors over

\[
\mathcal{N} \to \delta_{*}(\mathcal{L}_{\varphi}^{(N-1)} \otimes \omega_{\varphi}) \to \omega^{(N)}_{X}.
\]

Proof. Since \(\mathcal{N} \) is a subsheaf of \(\delta_{*} \mathcal{M} \) it is enough to construct an inclusion of \(\mathcal{M} \) into \(\mathcal{L}_{\varphi}^{(N-1)} \otimes \omega_{\varphi} \). We may choose the divisors \(E \) and \(D \) big enough to obtain a factorization

\[
\mathcal{M} \to \omega^{(N)}_{Y} \to \omega_{\varphi}(E)^{N}.
\]

If we denote the divisor given by the first inclusion by \(D_{1} \), that of the second inclusion by \(D_{2} \), we have \(D = D_{1} + D_{2} \). (1.7, d)) guarantees that \(E \leq \left\lfloor \frac{D_{2}}{N} \right\rfloor \) and hence \(E \leq \left\lfloor \frac{D}{N} \right\rfloor \). We obtain

\[
N \cdot E - D \leq (N - 1) \cdot E - \left[\frac{N - 1}{N} \cdot D \right],
\]

which just means that \(\mathcal{M} = \omega_{\varphi}(E)^{N} \otimes \mathcal{O}_{\varphi}(-D) \) is a subsheaf of \(\mathcal{L}_{\varphi}^{(N-1)} \otimes \omega_{\varphi} \).

(1.9) **Remark.** Comparing (1.7, c)) and (1.8) one can already guess how we are going to prove the conjecture of Riemenschneider. We have found a certain construction, attaching to a subsheaf \(\mathcal{N} \) of \(\omega^{(N)}_{X} \) another subsheaf: \(\delta_{*}(\mathcal{L}_{\varphi}^{(N-1)} \otimes \omega_{\varphi}) \).

A) If \(X \) has only quotient singularities, then \(\delta_{*}(\mathcal{L}_{\varphi}^{(N-1)} \otimes \omega_{\varphi}) \) is larger than the sheaf \(\mathcal{N} \) we started with.

B) If \(X \) has rational singularities other than quotient singularities, then \(\delta_{*}(\mathcal{L}_{\varphi}^{(N-1)} \otimes \omega_{\varphi}) + \omega^{(N)}_{X} \), even if we start with \(\mathcal{N} = \omega^{(N)}_{X} \).

In the next section we just have to verify that B) can not happen for the general fibre of a deformation, as soon as A) is true for the special fibre. To this aim we need a method to lift sections from the special fibre to the total space of the deformation. The vanishing theorem (1.5, iv)) turns out to serve this purpose.

2. **Deformations of Quotient Singularities**

Let \(\delta : Y \to X \) be a desingularization of the normal Cohen-Macaulay variety \(X \) such that the exceptional locus of \(\delta \) is a normal crossing divisor and such that \(\omega^{(N)}_{X} = \delta_{*} \omega^{(N)}_{Y} / \text{torsion} \) is invertible. We consider a reduced Cartier divisor \(X_{0} \) in \(X \) and its proper transform \(Y_{0} \) in \(Y \) (later \(X_{0} \) will be the special fibre of a deformation with total space \(X \)). We assume in addition that we have chosen \(\delta \) such that \(\delta_{*}(X_{0}) = Y_{0} + F \) is a normal crossing divisor. The natural morphisms are denoted by

\[
\begin{align*}
Y_{0} & \xrightarrow{i_{0}} Y \\
\Delta_{0} & \xrightarrow{s} s \\
X_{0} & \xrightarrow{i} X.
\end{align*}
\]
(2.1) Lemma. \(\mathcal{N}_0 = i^* \omega_X^{[N]} = \omega_X^{[N]} \otimes \mathcal{O}_{X_0} \) is torsionfree and the sheaf \(\mathcal{M}_0 = \delta_0^* \mathcal{N}_0 \) torsion is isomorphic to \(i_* \omega_f^{[N]} \).

Proof. The first statement is true for the restriction to \(X_0 \) of any reflexive sheaf \(\mathcal{F} \) on \(X \), which is locally free on a subvariety \(i: W \to X \) with \(\text{codim}(X - W) \geq 2 \). In fact, let \(i_0: W_0 = W \cap X_0 \to X_0 \) and \(\mathcal{F}_0 = i_* \mathcal{F} \). Since \(X_0 \) is a Cartier divisor we may use the projection formula to obtain

\[
i_* (i^* \mathcal{F} (-W_0)) = i_0^! (i^* \mathcal{F} \otimes i^* \mathcal{O}_X (-X_0)) = (i_0^* \mathcal{F}_0) \otimes \mathcal{O}_X (-X_0) = \mathcal{F} (-X_0) .
\]

Applying \(i_* \) to the exact sequence

\[
0 \to i^* \mathcal{F} (-W_0) \to i^* \mathcal{F} \to i^* \mathcal{F}_0 \to 0
\]

we obtain

\[
0 \to \mathcal{F} (-X_0) \to \mathcal{F} \to i_0^* \mathcal{F}_0 .
\]

Hence \(\mathcal{F}_0 \) is a subsheaf of the torsionfree sheaf \(i_0^* \mathcal{F}_0 \).

Now, let \(\mathcal{N} \) be the torsion part of \(\delta^* \omega_X^{[N]} \). We have exact sequences

\[
i^* \mathcal{N} \to i^* \delta^* \omega_X^{[N]} \to i^* \omega_f^{[N]} \to 0
\]

\[
\delta_0^* \mathcal{N}_0 \to \mathcal{M}_0 \to 0.
\]

\(i^* \mathcal{N} \) is supported in the exceptional locus of \(\delta_0 \) and therefore it is a torsion sheaf. The induced map \(i^* \mathcal{N} \to \mathcal{M}_0 \) has to be the zero map. We obtain a surjection \(i^* \omega_f^{[N]} \to \mathcal{M}_0 \). The first sheaf being invertible, this must be an isomorphism.

(2.2) Let \(R \) be a discrete valuation ring with residue field \(\mathbb{C} \), \(S = \text{Spec}(R) \) and \(f: X \to S \) a flat morphism. We write \(g = f: Y \to S \) and take \(X_0 \) to be the special fibre of \(f \). Keeping the notations introduced above, the special fibre of \(g \) is \(Y_0 \). The general fibres are denoted by \(X_u \) and \(Y_u \). Let \(U \) be the largest open subvariety of \(X \) which is smooth over \(S \). We assume that \(X - U \) is proper over \(S \) and that \(X_0 \) is normal. We refer to those conditions by saying that \(X_u \) is a deformation of \(X_0 \).

\(S \) being affine and non-singular, we identify \(\omega_S \) with \(\mathcal{O}_S \) and thereby \(\omega_{X \times S} \) with \(\omega_X \) and \(\omega_{Y \times S} \) with \(\omega_Y \). The normal sheaves of the special fibres of \(f \) and \(g \) can as well be identified with the structure sheaves and we can write \(\omega_{X_0} = \omega_X \otimes \mathcal{O}_{X_0} \) and

\[
\omega_{Y_0} = \omega_Y (-F) \otimes \mathcal{O}_{Y_0} = \omega_Y (Y_0) \otimes \mathcal{O}(-Y_0 - F) \otimes \mathcal{O}_{Y_0} .
\]

Of course, we also have \(\omega_{X_u} = \omega_X \otimes \mathcal{O}_{X_u} \) and \(\omega_{Y_u} = \omega_Y \otimes \mathcal{O}_{Y_u} \).

The sheaf \(\mathcal{N}_0 = \omega_X^{[N]} \otimes \mathcal{O}_{X_0} \) is torsionfree and restricted to \(U_0 = U \cap X_0 = \text{Reg}(X_0) \) it is isomorphic to \(\omega_{X_0}^{[n]} \). Therefore it is a subsheaf of \(\omega_{X_0}^{[N]} \), isomorphic to it outside of the singular locus of \(X_0 \), and we can define \(\mathcal{L}_{\nu}^{(0)} \) on \(Y_0 \) using (1.3).

(2.3) Lemma. \(\mathcal{L}_{\nu}^{(0)} \otimes \mathcal{O}_{Y_0} = \mathcal{L}_{\nu}^{(0)} \).

Proof. As in Sect. 1 we write \(\omega_Y^{[N]} = \omega_Y^{[N]} (N \cdot E - D) \). By construction \(Y_0 \) meets \(E \), \(D \) and \(F \) transversally and therefore the divisors \(E_0 = E \cap Y_0 \), \(D_0 = D \cap Y_0 \) and \(F_0 = F \cap Y_0 \) are normal crossing divisors. Moreover the multiplicities in \(D_0 \) can not
be larger than those occurring in D which implies that \(\left[\frac{i \cdot D_0}{N} \right] \cap Y_0 \). We have \(\mathcal{M}_0 = \omega_{Y_0}^N (N \cdot E_0 + N \cdot F_0 - D_0) \) and
\[
\mathcal{L}_{\mathcal{X}_0}^{(0)} = \omega_{Y_0} \left(i \cdot \left(E_0 + F_0 - \left[\frac{i \cdot D_0}{N} \right] \right) \right) = \omega_Y \left(i \cdot E - \left[\frac{i \cdot D}{N} \right] \right) \otimes \mathcal{O}_{Y_0}.
\]

Using the notations introduced in (1.4) the Lemma (2.3) is saying that \(\pi^{-1} (Y_0) \) is normal and can also be obtained as the cyclic cover corresponding to a general section of \(\mathcal{N}_0 \).

(2.4) Proposition. Assume that \(X_0 \) is a surface with at most quotient singularities, and assume that \(\text{Ind}(X_0) \) divides \(N \). Then there exists an inclusion
\[
\mathcal{N}_0 \hookrightarrow \delta_* (\mathcal{L}_{\mathcal{X}_0}^{(N-1)} \otimes \omega_Y) \otimes \mathcal{O}_{X_0},
\]
inducing an isomorphism outside of the singular locus of \(X_0 \).

Proof. The generalized Grauert-Riemenschneider vanishing theorem (1.5, iv)) implies that
\[
R^1 \delta_* (\mathcal{L}_{\mathcal{X}_0}^{(N-1)} \otimes \omega_Y (-Y_0 - F)) = R^1 \delta_* (\mathcal{L}_{\mathcal{X}_0}^{(N-1)} \otimes \omega_Y) \otimes \mathcal{O}_X (-X_0) = 0.
\]
Therefore we have exact sequences
\[
0 \rightarrow \delta_* (\mathcal{L}_{\mathcal{X}_0}^{(N-1)} \otimes \omega_Y (-Y_0 - F)) \rightarrow \delta_* (\mathcal{L}_{\mathcal{X}_0}^{(N-1)} \otimes \omega_Y) \rightarrow \delta_* (\mathcal{L}_{\mathcal{X}_0}^{(N-1)} \otimes \omega_Y) \rightarrow 0,
\]
\[
0 \rightarrow \delta_* (\mathcal{L}_{\mathcal{X}_0}^{(N-1)} \otimes \omega_Y) \otimes \mathcal{O}_X (-X_0) \rightarrow \delta_* (\mathcal{L}_{\mathcal{X}_0}^{(N-1)} \otimes \omega_Y) \rightarrow \delta_* (\mathcal{L}_{\mathcal{X}_0}^{(N-1)} \otimes \omega_Y + r) \rightarrow 0
\]
and obtain thereby an inclusion from \(\delta_* (\mathcal{L}_{\mathcal{X}_0}^{(N-1)} \otimes \omega_Y) \) into
\[
\delta_* (\mathcal{L}_{\mathcal{X}_0}^{(N-1)} \otimes \omega_Y + r) = \delta_* (\mathcal{L}_{\mathcal{X}_0}^{(N-1)} \otimes \omega_Y) \otimes \mathcal{O}_{X_0}.
\]
Now (2.4) follows from (1.8).

Proposition (2.4) enables us to prove the main result of this note.

(2.5) Theorem. Assume \(X_0 \) to be a surface with quotient singularities, and let \(X_1 \) be the general fibre of a deformation of \(X_0 \) over a discrete valuation ring. Then \(X_1 \) has quotient singularities.

(2.6) Remark. a) In the proof of (2.5) we will also obtain some information about the sheaf \(\mathcal{N}_0 \) and \(\mathcal{M}_0 \), saying that
\[
\mathcal{N}_0 = \delta_* (\mathcal{L}_{\mathcal{X}_0}^{(N-1)} \otimes \omega_Y).
\]
b) Of course, the arguments used in the proof of (2.5) also apply to an analytic deformation of \(X_0 \) over a disc and show that all "nearby" fibres \(X_1 \) have quotient singularities.

c) In the proof of (2.5) we will use for simplicity Elkik's result on deformations of rational singularities. However, the arguments given below could be used for \(N = 1 \) to prove that (1.1) forces \(X_1 \) to have rational singularities.

Proof of (2.5). We know from [1] that \(X_1 \) has rational singularities. Hence \(\text{Ind}(X_0) \) and \(\text{Ind}(X_1) \) are defined and we choose some \(N \) divisible by both of
them. Let \(\mathcal{E} \) be the cokernel of the inclusion of \(\delta_* (\mathcal{L}^{(N-1)} \otimes \omega_Y) \) into \(\omega_{X_0}^{N} \). Restricting the corresponding exact sequences to \(X_0 \) one obtains

\[
\delta_* (\mathcal{L}^{(N-1)} \otimes \omega_Y) \otimes \mathcal{E}_{X_0} \xrightarrow{\delta_*} \mathcal{N}_0 \rightarrow \mathcal{E} \otimes \mathcal{O}_{X_0} \rightarrow 0.
\]

We know from (2.4) that the left hand side contains \(\mathcal{N}_0 \) and we thereby find a map \(\alpha : \mathcal{N}_0 \rightarrow \mathcal{N}_0 \), isomorphic outside of the singular locus. The induced map \(\mathcal{N}_0^{\vee \vee} \rightarrow \mathcal{N}_0^{\vee \vee} \) between invertible sheaves must be the multiplication with a unit and hence \(\alpha \) must be an isomorphism. Therefore, \(\beta \) is surjective and \(\mathcal{E} \otimes \mathcal{O}_{X_0} = 0 \).

The support of \(\mathcal{E} \) is closed in \(X \), since \(\mathcal{E} \) is coherent, and it is contained in the non-smooth locus \(X - U \). Hence the support of \(\mathcal{E} \) is proper over \(S \). This is only possible for \(\mathcal{E} = 0 \), i.e. if \(\delta_* (\mathcal{L}^{(N-1)} \otimes \omega_Y) \) is reflexive. Regarding this on the general fibre we find \(\delta_* (\mathcal{L}^{(N-1)} \otimes \omega_Y) \) to be reflexive and (1.7, c) implies that \(X_0 \) has only quotient singularities.

The remark (2.6, a)) follows from the fact that the isomorphism \(\alpha \) factors by construction over

\[
\mathcal{N}_0 \xrightarrow{\delta_0} \mathcal{L}^{(N-1)} \otimes \omega_Y \rightarrow \mathcal{N}_0^0
\]

and that the sheaf in the middle is torsion-free.

3. Concluding Remarks and Examples

Keeping the notations introduced in Sect.2, we assume \(f : X \rightarrow S \) to be a deformation of the quotient singularity \(X_0 \). We denote by \(U \) the largest subvariety of \(X \) which is smooth over \(S \). If \(\text{Ind}(X_0) \) and \(\text{Ind}(X_0) \) divide \(N \), we may assume – replacing \(X \) by an affine neighbourhood of the singularity – that \(\omega_{X_0}^N \cong \mathcal{O}_X \) and \(\omega_{X_0}^N \cong \mathcal{O}_X \). It seems natural to expect that \(\omega_{X_0}^N \cong \mathcal{O}_X \), in other words, to expect that the trivializing section of \(\omega_{X_0}^N \) can be extended to \(U \). Unfortunately this is in general not the case, even if we replace \(N \) by some multiple and even if we assume \(X_0 \) to be non singular.

(3.1) The first order obstruction to deform "trivializing sections" (Levine, [7]).

Let \(N \) be any multiple of \(\text{Ind}(X_0) \) and \(\pi_0 : X_0 \rightarrow X_0 \) the canonical cover of degree \(N \). We write \(p : \pi_0^{-1}(U_0) = U_0^N \rightarrow U_0 \) for the restriction of \(\pi_0 \). If \(p_* : \mathcal{O}_{U_0} \rightarrow \omega_{U_0}^N \) is an isomorphism, then \(p^*(t_0) = t_0^N \) for \(t_0 : \mathcal{O}_{U_0} \rightarrow \omega_{U_0}^N \). The deformation \(f \) gives an element \(q \in H^1(U_0, \Theta_{\mathcal{O}_U}) \) and the evaluation of \(p^*(q) \) on \(t_0 \) is

\[
\mu_q = \langle p^*(q), t_0 \rangle \in H^1(U_0, \Omega_{U_0}^1).
\]

Differentiating and multiplying with \(t_0^{N-1} \) we find

\[
\nu_q = t_0^{N-1} \cdot d\mu_q \in H^1(U_0, \omega_{U_0}^N)
\]

and

\[
\nu_q = \text{trace}_{U_0^{N} / U_0}(\nu_q) \in H^1(U_0, \omega_{U_0}^N).
\]

In [7] it is shown that \(\nu_q \) is the obstruction wanted. Especially, \(\nu_q \neq 0 \) implies that \(s_0 \) cannot extend to a trivializing section of \(\omega_{U_0}^N \).

Let \(i : X_0 \rightarrow \mathbb{A}^n \) be an embedding and \(\tau : \mathbb{A}^2 \rightarrow X_0 \) be the Galois cover with Galois group \(G \), étale over \(U_0 \). Then the first order deformations of \(X_0 \) are
described by \(T_{X_0}^1 \), the kernel of the map
\[
H^1(U_0, \Omega_{U_0}) = H^1(\mathbb{A}^2 - \{0\}, \Theta_{\mathbb{A}^2 - \{0\}})^G \\
\quad \rightarrow H^1(\mathbb{A}^2 - \{0\}, \tau^* \Theta_{\mathbb{A}^2})
\] [12].

The fibre product \(U_0 \times_{U_0} (\mathbb{A}^2 - \{0\}) \) is the disjoint union of several copies of \(\mathbb{A}^2 - \{0\} \). In order to calculate \(v_\sigma \) we can consider \(\mu_\sigma \) and \(v_\sigma \) on one of those \(\mathbb{A}^2 - \{0\} \) and identify \(t_0 \) with \(dx \wedge dy \), where \((x, y)\) denotes a coordinate system on \(\mathbb{A}^2 \).

(3.2) Example. Let \(G = \langle \sigma \rangle \) be the cyclic group of order three acting on \(\mathbb{C}[x, y] \) by \(\sigma(x) = e \cdot x \) and \(\sigma(y) = e \cdot y \) for a third root of unit \(e \). Let \(X_0 = \text{Spec}(\mathbb{C}[x, y]) \). The inclusion \(i : X_0 \rightarrow \mathbb{A}^4 \) is defined by the invariants \(x^3, x^2 \cdot y, x \cdot y^2, \) and \(y^3 \).

\(T_{X_0}^1 \) is generated as an \(\mathcal{O}_{X_0} \)-module by
\[
q_1 = x^{-1} \cdot y^{-1} \cdot \frac{\partial}{\partial x} \quad \text{and} \quad q_2 = x^{-1} \cdot y^{-1} \cdot \frac{\partial}{\partial y}.
\]

We find
\[
v_{\sigma_1} = (dx \wedge dy)^{N-1} \cdot d \left(x^{-1} \cdot y^{-1} \cdot \frac{\partial}{\partial x}, dx \wedge dy \right) \\
= (dx \wedge dy)^{N-1} \cdot d(x^{-1} \cdot y^{-1} \cdot dy) = -x^{-2} \cdot y^{-1} \cdot (dx \wedge dy)^N
\]
and similarly
\[
v_{\sigma_2} = x^{-1} \cdot y^{-2} \cdot (dx \wedge dy)^N.
\]

Both are independent elements of \(H^1(U_0, \Omega_{U_0}^N) \) and therefore \(v_\sigma \neq 0 \) for all nontrivial \(\sigma \in T_{X_0}^1 \). Of course, we may choose \(\sigma \) to be the infinitesimal deformation corresponding to a smoothing of \(X_0 \).

(3.3) Remark. It is not too surprising that \(v_\sigma \) may be non zero. If we return to the notations of (2.2) we see that the sheaf \(\omega_{X_0}^N \) is larger that \(\omega_{X_0}^N \) in general. The arguments given in [7] in order to show that \(v_\sigma = 0 \) can only work for sections of powers of dualizing sheaves. Nevertheless, our calculation in §2 gives some conditions for sections to be deformable. The sheaf \(\mathcal{N}_0 \) is the sheaf generated by all deformable sections of \(\omega_{X_0}^N \) and (2.6, a)) gives the condition that
\[
H^0(X_0, \mathcal{N}_0) = H^0(X_0, \delta_\sigma(\mathcal{L}_{X_0}^{N-1}) \otimes \omega_{Y_0}).
\]

Even if we don’t see at the moment how to interprete this condition, it seems to say that \(\mathcal{N}_0 \) can not be too small compared to \(\omega_{X_0}^N \).

If one tries to use the methods of our note, i.e., the use of vanishing theorems for integral parts of \(\mathbb{Q} \)-divisors (and related results), to the global problem considered in [7], one finds a similar description of the sheaf of deformable sections of powers of dualizing sheaves. It would be interesting to reprove the results from [7] using this description.

On the other hand the obstruction classes explained in (3.1) seem to contain some information on \(\mathcal{N}_0 \). Maybe, if one is able to define and to calculate those classes not only for the fibres \(X_0 \) but also for fibrecomponents \(Y_0 \) and their infinitesimal neighbourhoods, this could give another more direct approach to describe \(\mathcal{N}_0 \) and to reprove (2.5).
Two Dimensional Quotient Singularities

References

Received July 6, 1984; in revised form October 17, 1984