Publications

Fluorescent Materials
Tuning the solid-state emission of liquid crystalline nitro-cyanostilbene by halogen bonding
Subrata Nath, Alexander Kappelt, Matthias Spengler, Bibhisan Roy, Jens Voskuhl and Michael Giese*

Beilstein J. Org. Chem., 2021, 17, 124-131.

The first example of halogen-bonded fluorescent liquid crystals based on the interaction of iodofluorobenzene derivatives with nitro-cyanostilbenes is reported. The systematic variation of the fluorination degree and pattern indicates the relevance of the halogen bond strength for the induction of liquid crystalline properties. The modular self-assembly approach enables the efficient tuning of the fluorescence behaviour and mesomorphic properties of the assemblies.

Chiral Mesophases
Chiral mesophases of hydrogen-bonded liquid crystals
Florian Malotke, Marco Saccone, Christoph Wölper, Ronald Y. Dong, Carl A. Michal, and Michael Giese*

Mol. Syst. Des. Eng., 2020, 5, 1299–1306.

The chiral induction in hydrogen-bonded liquid crystals is investigated. The experimental study was accompanied by detailed density functional theory calculations and variable-temperature solid-state deuteron NMR measurements indicating that interactions between the linking groups of the hydrogen-bond accepting unit play a key role in the chiral induction.

Fluorescent Materials
Photo‐switchable Fluorescence in Hydrogen‐Bonded Liquid Crystals
Alexander Kappelt and Michael Giese*

Chem. Eur. J., 2020, accepted for publication.

A series of hydrogen‐bonded liquid crystals showing switchable fluorescence is reported. The fluorescence behavior results from the unique combination of hydrogen bonding, liquid crystallinity, and photobasicity. Thus, the molecular mobility in the mesophase is essential for the reversible photo‐initiated proton transfer switching on the fluorescence of the assemblies. The application potential of the materials for photo‐patterning was demonstrated.

Polymeric Nanoparticles
Water-Soluble, pH Responsive Polymeric Nanoparticles: A Modular Approach
Marcel Klein-Hitpaß, Jan-Erik Ostwald, Shirley K. Knauer, Carsten Schmuck, Jens Voskuhl*, and Michael Giese*

ACS Appl. Polym. Mater. 2020, 2, 7, 2499-2503–2364.

Herein, we describe the development of a modular approach to create pH responsive polymeric nanoparticles. We combined monomers containing guadiniocarbonyl pyrrole carboxylate zwitterion (GCP)-zwitterion with different simple monomers by ring-opening metathesis polymerization (ROMP). The dimerization of the GCP-zwitterion allows formation of polymer nanoparticles in neutral and acidic aqueous solution, which can reversibly be rearranged by changing the pH. The modularity of our approach allowed us to tune the solubility of the polymeric nanoparticles and preserve the pH switchability of the systems. We were able to use the pH switchability for reversible uptake and partial release of Nile red.

Polymeric Nanoparticles
Smart Glycopolymeric Nanoparticles for Multivalent Lectin Binding and Stimuli-controlled Guest Release
Subrata Saha, Marcel Klein-Hitpaß, Cecilia Vallet, Shirley K. Knauer, Carsten Schmuck, Jens Voskuhl*, and Michael Giese*

Biomacrmolecules, 2020, 21, 6, 2356-2364.

The synthesis and self-assembly of a polymer featuring a self-complementary supramolecular binding motif guanidiniocarbonyl pyrrole carboxylate zwitterion (GCP-zwitterion) bearing lactose moieties are reported. The GCP-zwitterion acts as a cross-linker to facilitate self-assembly of the polymeric chain into nanoparticles (NPs) at neutral pH in an aqueous medium. The formation of polymeric NPs can be controlled by addition of external stimuli (acid or base), which disfavors self-assembly of the GCP-zwitterion because of protonation or deprotonation of the GCP units in the polymer chain. The small-sized (<40 nm) NPs have a hydrophobic cavity and accessible lactose units on the outer shell for multivalent lectin binding. The multivalent interaction between NPs and the lectin peanut agglutinin was confirmed by agglutination experiments. In addition, the stimuli-responsive property of NPs was exploited for the uptake and release of a hydrophobic guest Nile red. Furthermore, the selectivity toward different cell lines (HEK 296T, HeLa, and Hep2G) was tested, and a cellular uptake of cargo-loaded NPs was found for Hep2G cells bearing the lactose-specific asialogylcoprotein receptor, whereas all other cells showed no NP interaction.

Chiral Mesophases
Hydrogen-bonded liquid crystals with broad-range blue phases
Marco Saccone, Michael Pfletscher, Ellen Dautzenberg, Ronald Y. Dong, Carl A. Michaland Michael Giese*

Biomacrmolecules, 2020, 21, 6, 2356-2364.

The synthesis and self-assembly of a polymer featuring a self-complementary supramolecular binding motif guanidiniocarbonyl pyrrole carboxylate zwitterion (GCP-zwitterion) bearing lactose moieties are reported. The GCP-zwitterion acts as a cross-linker to facilitate self-assembly of the polymeric chain into nanoparticles (NPs) at neutral pH in an aqueous medium. The formation of polymeric NPs can be controlled by addition of external stimuli (acid or base), which disfavors self-assembly of the GCP-zwitterion because of protonation or deprotonation of the GCP units in the polymer chain. The small-sized (<40 nm) NPs have a hydrophobic cavity and accessible lactose units on the outer shell for multivalent lectin binding. The multivalent interaction between NPs and the lectin peanut agglutinin was confirmed by agglutination experiments. In addition, the stimuli-responsive property of NPs was exploited for the uptake and release of a hydrophobic guest Nile red. Furthermore, the selectivity toward different cell lines (HEK 296T, HeLa, and Hep2G) was tested, and a cellular uptake of cargo-loaded NPs was found for Hep2G cells bearing the lactose-specific asialogylcoprotein receptor, whereas all other cells showed no NP interaction.

Publications 2024

(77) "Mesogens with aggregation-induced emission properties: Materials with a bright future" – M. E. Gutierrez Suburu, M. Blanke, L. Geerkens, A. Hepp, I. Maisuls, J. Kösters, T. Neumann, J. Voskuhl, M. Giese, C. A. Strassert, Aggregate, 2024, e473. DOI: https://doi.org/10.1002/agt2.473

Publications 2023

(76) "Direct Digital Photonic Patterning of Hydrogen-Bonded Cholesteric Liquid-Crystalline Films" – F. Malotke, T. Thiele, J. S. Gutmann and M. Giese*, ACS Applied Materials & Interfaces, 2023, DOI: 10.1021/acsami.3c10684

(75) "Pt(II) Complexes with Tetradentate C^N*N^C Luminophores: From Supramolecular Interactions to Temperature-Sensing Materials with Memory and Optical Readouts" – M. E. Gutierrez Suburu, M. Blanke, A. Hepp, O. Maus, D. Schwab, N. L. Doltsinis, W. G. Zeier, M. Giese, J. Voskuhl and C. A. Strassert*, Molecules, 2023, 28, 7353, DOI: 10.3390/molecules28217353

Publications 2022

(74) "Tuning the Fluorescence in Dynamic Covalent Bonded Liquid Crystals" – M. Blanke, T. Neumann, M. E. Gutierrez Suburu, O. Prymak, C. Wölper, C. A. Strassert and M. Giese*, ACS Applied Materials & Interfaces, 2022, 14, 55864-55872. DOI: 10.1021/acsami.2c16209

(73) "Supramolecular Tools for the Stabilisation of Blue-Phase Liquid Crystals" – F. Kraus, M. Giese*, Organic Materials, 2022. DOI: 10.1055/s-0042-1757971

(72) "Advances towards Cell-Specific Gene Transfection: A Small-Molecule Approach Allows Order-of-Magnitude Selectivity" – T. Dirksmeyer, P. Stahl, C. Vallet, S. Knauer*, M. Giese, C. Schmuck and C. Hirschhäuser, Chem. Eur. J., 2022. DOI: 10.1002/chem.202104618

(71) "Computational model predicts protein binding sites of a luminescent ligand equipped with guanidiniocarbonyl-pyrrole groups" – N. Rafieiolhosseini, M. Killa, T. Neumann, N. Tötsch, J. Grad, A. Höing, T. Dirksmeyer, J. Niemeyer, C. Ottmann, S. K. Knauer, M. Giese, J. Voskuhl and D. Hoffmann*, Beilstein J. Org. Chem., 2022. DOI: 10.3762/bjoc.18.137

(70) "Evolution of Artificial Arginine Analogues—Fluorescent Guanidiniocarbonyl-Indoles as Efficient Oxo-Anion Binders" – D. Sebena, K. Rudolph, B. Roy, C. Wölper, T. Nitschke, S. Lampe, M. Giese* and J. Voskuhl*, Molecules, 2022. DOI: 10.3390/molecules27093005

(69) "Manipulation of Liquid Crystalline Properties by Dynamic Covalent Chemistry─En Route to Adaptive Materials" – M. Blanke, L. Postulka, I. Ciara, F. D’Acierno, M. Hildebrandt, J. S. Gutmann, R. Y. Dong, C. A. Michal and M. Giese*, ACS Appl. Mater. Interfaces, 2022, DOI: 10.1021/acsami.2c03241

(68) "Hydrogen-Bonded Cholesteric Liquid Crystals—A Modular Approach Toward Responsive Photonic Materials" – F. Malotke, M. Spengler, L. Pschyklenk, M. Saccone, P. Kaul* and M. Giese*, Advanced Photonics Research, 2022, 2100353. DOI: 10.1002/adpr.202100353

(67) "Controlling ambidextrous mirror symmetry breaking in photosensitive supramolecular polycatenars by alkyl-chain engineering" – M. Alaasar, X. Cai*, F. Kraus, M. Giese*, F. Liu and C. Tschierske*, J. Mol. Liq., 2022, 351, 118597. DOI: 10.1016/j.molliq.2022.118597

(66) "Selective Disruption of Survivin's Protein-Protein Interactions: A Supramolecular Approach Based on Guanidiniocarbonylpyrrole" – D. Aschmann, C. Vallet, S. K. Tripathi, Y. B. Ruiz-Blanco, M. Brabender, C. Schmuck, E. Sanchez-Garcia*, S. K. Knauer* and M. Giese*, ChemBioChem, 2022, e202100618. DOI: 10.1002/cbic.202100618

(65) "Mesogens with aggregation-induced emission properties: Materials with a bright future" – J. Voskuhl and M. Giese, Aggregate, 2022, e124. DOI: 10.1002/agt2.124

Publications 2021

(64) "Naturally occurring polyphenols as building blocks for supramolecular liquid crystals – substitution pattern dominates mesomorphism" – J. Balszuweit, M. Blanke, M. Saccone, M. Mezger, C. G. Daniliuc, C. Wölper, M. Giese* and J. Voskuhl*, Mol. Syst. Des. Eng., 2021. DOI: 10.1039/D0ME00171F

(63) "Prospects of ultraviolet resonance Raman spectroscopy in supramolecular chemistry on proteins" – V. Kumar, T. Holtum, J. Voskuhl, M. Giese, T. Schrader, S. Schlücker*, Spectrochim. Acta A, 2021, 254, 119622. DOI: 10.1016/j.saa.2021.119622

(62) "Photonic NO2 Gas Sensing with Binaphthyl-Based Dopants" – M. Spengler, L. Pschyklenk, J. Niemeyer, P. Kaul and M. Giese*, Adv. Opt. Mater., 2021, n/a, 2001828. DOI: 10.1002/adom.202001828

(61) "Tuning the solid-state emission of liquid crystalline nitro-cyanostilbene by halogen bonding" – S. Nath, A. Kappelt, M. Spengler, B. Roy, J. Voskuhl and M. Giese*, Beilstein J. Org. Chem., 2021, 17, 124-131. DOI: 10.3762/bjoc.17.13

(60) "Ultraviolet resonance Raman spectroscopy with a continuously tunable picosecond laser: Application to the supramolecular ligand guanidiniocarbonyl pyrrole (GCP)" – V. Kumar, T. Holtum, D. Sebena, M. Giese, J. Voskuhl and S. Schlücker*, Spectrochim. Acta A, 2021, 250, 119359. DOI: 10.1016/j.saa.2020.119359

Publications 2020

(59) "Chiral mesophases of hydrogen-bonded liquid crystals" – F. Malotke, M. Saccone, C. Wölper, R. Y. Dong, C. A. Michal and M. Giese*, Mol. Syst. Des. Eng., 2020, 5, 1299-1306. DOI: 10.1039/D0ME00070A

(58) "Water-Soluble, pH Responsive Polymeric Nanoparticles: A Modular Approach" – M. Klein-Hitpaß, J.-E. Ostwaldt, C. Schmuck* and M. Giese*, ACS Appl. Polym. Mater. 2020, 2, 2499-2503. DOI: 10.1021/acsapm.0c00394

(57) “Photo-switchable Fluorescence in Hydrogen-bonded Liquid Crystals” – A. Kappelt, M. Giese,* Chem. Eur. J. 2020, 26, 13347-13351. DOI: 10.1002/chem.202001696

(56) " Alkyl‐Alkyl Interactions in the Periphery of Supramolecular Entities: From the Evaluation of Weak Forces to Applications " – M. Giese,* M. Albrecht,* ChemPlusChem 2020, 85, 715-724. DOI: 10.1002/cplu.202000077

(55) " Guanidiniocarbonyl‐Pyrroles (GCP) – 20 Years of the Schmuck Binding Motif " – M. Giese,* J. Niemeyer,* J. Voskuhl,* ChemPlusChem 2020, 85, 985-997. DOI: 10.1002/cplu.202000142

(54) "Smart Glycopolymeric Nanoparticles for Multivalent Lectin Binding and Stimuli-controlled Guest Release" – S. Saha, M. Klein-Hitpaß, C. Vallet, S. K. Knauer, C. Schmuck, J. Voskuhl,* M. Giese,* Biomacromolecules 2020, 21, 6, 2356–2364. DOI: 10.1021/acs.biomac.0c00292

(53) "Plasmonic seasoning: Giving color to desktop laser 3D-printed polymers by highly dispersed nanoparticles" – T. Hupfeld, A. Wegner, M. Blanke, C. Doñate-Buendía, V. Sharov, S. Nieskens, M. Piechotta, M. Giese, S. Barcikowski, B. Gökce,* Advanced Optical Materials 2020, 8, 15, 2000473. DOI: 10.1002/adom.20200047

(52a) "Functional Disruption of the Cancer‐Relevant Interaction between Survivin and Histone H3 with a Guanidiniocarbonyl Pyrrole Ligand" – C. Vallet,* D. Aschmann, C. Beuck, M. Killa, A. Meiners, M. Mertel, M. Ehlers, P. Bayer, C. Schmuck, M. Giese,* S. K. Knauer,* Angew. Chem. Int. Ed. 2020, 59, 5567-5571. DOI: 10.1002/anie.201915400

(52b) "Funktionelle Inhibition der krebsrelevanten Interaktion von Survivin und Histon H3 mit einem Guanidiniumcarbonylpyrrol‐Liganden" – C. Vallet,* D. Aschmann, C. Beuck, M. Killa, A. Meiners, M. Mertel, M. Ehlers, P. Bayer, C. Schmuck, M. Giese,* S. K. Knauer,* Angew. Chem. 2020, 132, 5614-5619. DOI: 10.1002/ange.201915400

(51) "Photo-switching and -cyclisation of hydrogen bonded liquid crystals based on resveratrol" – M. Blanke, J. Balszuweit, M. Saccone, C. Wölper, D. Doblas Jiménez, M. Mezger, J. Voskuhl and M. Giese,* Chem. Commun., 2020, 56, 1105-1108 DOI: 10.1039/C9CC07721A

Publications 2019

(50) "Control of secondary structure and morphology of peptide–guanidiniocarbonylpyrrole conjugates by variation of the chain length", Xin Liu, Kaiya Wang, Marlen Externbrink, Jochen Niemeyer, Michael Giese, Xiao-Yu Hu,*
 Chin. Chem. Lett., 2019, DOI: 10.1016/j.cclet.2019.10.036

(49) "Mesogens with Aggregation-Induced Emission Formed by Hydrogen Bonding" – M. Saccone, M. Blanke, C. G. Daniliuc, H. Rekola, J. Stelzer, A. Priimagi, J. Voskuhl and M. Giese,* ACS Materials Letters, 2019, 589-593. DOI: 10.1021/acsmaterialslett.9b00371

(48) "Improving the mesomorphic behaviour of supramolecular liquid crystals by resonance-assisted hydrogen bonding" – M. Saccone, M. Pfletscher, S. Kather, C. Wölper, C. Daniliuc, M. Mezger and M. Giese,* Journal of Materials Chemistry C, 20197, 8643-8648. DOI: 10.1039/C9TC02787D

(47) "Structure–property relationships in aromatic thioethers featuring aggregation-induced emission: solid-state structures and theoretical analysis" – M. Saccone, S. Riebe, J. Stelzer, C. Wölper, C. G. Daniliuc, J. Voskuhl* and M. Giese,* CrystEngComm, 2019, 21, 3097-3105. DOI: 10.1039/C9CE00444K

(46) "Alkyloxy modified pyrene fluorophores with tunable photophysical and crystalline properties", A. Kapf, H. Eslahi, M. Blanke, M. Saccone, M. Giese* and M. Albrecht, New J. Chem. 201943, 6361-6371. DOI: 10.1039/C9NJ00652D

(45) "Polymorphism of Hydrogen-bonded Star Mesogens – A Combinatorial DFT-D and FT-IR Spectroscopy Study", M. Pfletscher, J. Wysoglad, J. Gutmann and M. Giese,* RSC Adv., 2019, 9, 8444-8453. DOI: 10.1039/C8RA09458F

(44) "Hydrogen-bonded liquid crystals with broad-range blue phases" – M. Saccone, M. Pfletscher, E. Dautzenberg, R. Y. Dong, C. A. Michal and M. Giese,*  J. Mater. Chem. C, 2019, 7, 3150-3153. DOI: 10.1039/C8TC06428H

(43) "Photoresponsive Halogen-Bonded Liquid Crystals: The Role of Aromatic Fluorine Substitution" – M. Saccone, M. Spengler, M. Pfletscher, K. Kuntze, M. Virkki, C. Wölper, R. Gehrke, G. Jansen, P. Metrangolo, A. Priimagi and M. Giese,* Chem. Mater., 2019, 31, 462-470. DOI: 10.1021/acs.chemmater.8b04197

(42) "Cellulose nanocrystals in nanoarchitectonics – towards photonic functional materials" – M. Giese* and M. Spengler, Mol. Syst. Des. Eng., 2019, 4, 29 - 48, DOI: 10.1039/C8ME00065D

Publications 2018

(41) "Supramolecular Modification of ABC Triblock Terpolymers in Confinement Assembly" – G. Quintieri, M. Saccone, M. Spengler, M. Giese* and A. H. Gröschel, 2018, 8, 1029. DOI: 10.3390/nano8121029

(40) “Alkylated Aromatic Thioethers with Aggregation-Induced Emission Properties – Assembly and Photophysics” – S. Riebe, M. Saccone, J. Stelzer, A. Sowa, C. Wölper, K. Soloviova, C. Strassert, M. Giese,* J. Voskuhl,* Chem. Asian J., 2018, 14814-820. DOI: 10.1002/asia.201801564

(39) “On the blue phase structure of hydrogen-bonded liquid crystals via 19F NMR” – R.Y. Dong,* C.A. Michal, M. Saccone, M. Spengler, C. Wölper, M. Giese,* Chem. Phys. Lett. 2018, 710, 39-44. DOI: 10.1016/j.cplett.2018.08.056

(38) “Ortho-fluorination of azophenols increases the mesophase stability of photoresponsive hydrogen-bonded liquid crystals” – M. Saccone, K. Kuntze, Z. Ahmed, A. Siiskonen, M. Giese,* A. Priimagi, J. Mater. Chem. C 2018, 6, 9958-9963. DOI: 10.1039/C8TC02611D

(37) “On the Impact of Linking Groups in Hydrogen-Bonded Liquid Crystals - A case study” – M. Pfletscher, M. Mezger,* M. Giese,*  Soft Matter 2018, 14, 6214-6221. DOI: 10.1039/C8SM00802G

(36) “Hydrogen‐Bonded Liquid Crystals in Confined Spaces—Toward Photonic Hybrid Materials” – M. Spengler, R.Y. Dong, C.A. Michal, W.Y. Hamad, M. J. MacLachlan,* M. Giese,*  Adv. Funct. Mater. 2018, 28, 1800207-1800207. DOI: 10.1002/adfm.201800207

Publications 2017

(35) “Structure-Property-Relationship in Hydrogen-bonded Liquid Crystals” – M. Pfletscher, S. Hölscher, C. Wölper, M. Mezger, M. Giese,*  Chem. Mat. 2017, 29, 8462-8471. DOI: 10.1021/acs.chemmater.7b03182

(34) “Fluorination of supramolecular liquid crystals – tuning tool and analytical probe” – M. Spengler, R. Y. Dong, C. A. Michael, M. Pfletscher, M. Giese,*  J. Mater. Chem. C 2017, 5, 2235-2239. DOI: 10.1039/C6TC05472B

Publications 2016

(33) “Magnetic Mesporous Photonic Cellulose Films” – M. Giese, L. K. Blusch, G. R. Meseck, W. Y. Hamad, M. Arjmand, U. Sundatataj, M. J. MacLachlan, Langmuir 2016, 32, 9329-9334. DOI: 10.1021/acs.langmuir.6b02974

(32) “A modular approach towards functional supramolecular aggregates – subtle structural differences inducing liquid crystallinity” – M. Pfletscher, C. Wölper, J.S. Gutmann, M. Mezger,  M. Giese,*  Chem. Commun. 2016, 52, 8549-8552. DOI: 10.1039/C6CC03966A

(31) “Experimental investigation of anion–π interactions – applications and biochemical relevance” – M. Giese,* M. Albrecht,* K. Rissanen,* Chem. Commun. 2016, 52, 1788-1795. DOI: 10.1039/C5CC09072E

Publications 2015

(30) “Anion-π Interactions with Fluoroarenes” – M. Giese,* M. Albrecht,* K. Rissanen,* Chem. Rev. 2015, 115, 8867-8895. DOI: 10.1021/acs.chemrev.5b00156

(29) “Tuning the photonic properties of chiral nematic mesoporous organosilica with hydrogen-bonded liquid-crystalline assemblies” – M. Giese,* T. Krappitz, R.Y. Dong, C.A. Michal, W.Y. Hamad, B.O. Patrick, M. J. MacLachlan,* J. Mater. Chem. C 2015, 3, 1537-1545. DOI: 10.1039/C4TC02602K (Hot Article)

(28) “Chiral nematic cellulose–gold nanoparticle composites from mesoporous photonic cellulose” – M. Schlesinger, M. Giese, L. K. Blusch, W. Y. Hamad, M. J. MacLachlan, Chem. Commun. 2015, 51, 530-533. DOI: 10.1039/C4CC07596J

(27) “The pentafluorophenyl group as π-acceptor for anions: a case study” – M. Giese, M. Albrecht, A. Valkonen, K. Rissanen, Chem. Sci. 2015, 6, 354-359. DOI: 10.1039/C4SC02762K  

(26) “Functional Materials from Cellulose-Derived Liquid Crystal Templates” – M. Giese, L. K. Blusch, M. K. Khan, M. J. MacLachlan, Angew. Chem. Int. Ed. 2015, accepted for publication. DOI: 10.1002/anie.201407141; Angew. Chem. 2015, DOI: 10.1002/ange.201407141.

Publications 2014

(25) “NMR of guest-host systems: 8CB in chiral nematic porous glass” – A. P. Manning, M. Giese, A. S. Terpstra, M. J. MacLachlan, W. Y. Hamad, R. Y. Dong, C. A. Michal, Magn. Reson. Chem. 2014, 532-539. DOI: 10.1002/mrc.4101

(24) “Theoretical Investigations on the Structural Variability of Anion-π Interactions” – V. Moha, M. Giese, R. Moha, M. Albrecht, G. Raabe, Z. Naturforsch. 2014, 69a, 339-348. DOI: 10.5560/ZNA.2014-0031.

(23) „Synthesis of 7-pentafluorophenyl-1H-indole: An anion receptor for anion-π interactions.” - Z.-H. Sun, M. Albrecht, M. Giese, F.-F. Pan, K. Rissanen, Synlett 2014, 25, 2075-2077. DOI: 10.1055/s-0034-1378449

(22) “The Development of Chiral Nematic Mesoporous Materials” - J. A. Kelly, M. Giese, K. E. Schopsowitz, W. Y. Hamad, M. J. MacLachlan, Acc. Chem. Res. 2014, 47, 1088-1096. DOI: 10.1021/ar400243m

(21) “Responsive Photonic Nanopaper by Supramolecular Co Templating” - M. Giese, L. K. Blusch, M. K. Khan, W. Y. Hamad, M. J. MacLachlan, Angew. Chem. Int. Ed. 2014, 53, 8880-8884, DOI: 10.1002/anie.201402214; Angew. Chem. 2014, 126, 9026–9030. DOI:  10.1002/ange.201402214

(20) “Solid state anion-π interactions involving polyhalides” - M. Giese, M. Albrecht, C. Bohnen, T. Repenko, A. Valkonen, K. Rissanen, Dalton Trans. 2014, 43, 1873-1880. DOI: 10.1039/C3DT52960F

(19) “Single crystal X-ray diffraction and solution studies of anion-π interactions in N-pentafluoro-benzylpyridinium salts” - M. Giese, M. Albrecht, T. Repenko, J. Sackmann, A. Valkonen, K. Rissanen, Eur. J. Org. Chem. 2014, 2435-2442. DOI: 10.1002/ejoc.201301336

Publications 2013

(18) “Iridescent Chiral Nematic Cellulose Nanocrystal (CNC) / Polymer Composites Assembled in Organic Solvents” - C. Cheung, M. Giese, J. A. Kelly, W. Y. Hamad, M. J. MacLachlan, ACS Macro Lett. 2013, 2, 1016–1020. DOI: 10.1021/mz400464d

(17) “Imprinting of photonic patterns with novel thermosetting amino-formaldehyde-cellulose composites” - M. Giese, M. K. Khan, W. Y. Hamad, M. J. MacLachlan, ACS Macro Lett. 2013, 2, 818–821. DOI: 10.1021/mz4003722

(16) “Thermal switching of the reflection in chiral nematic mesoporous organosilica films infiltrated with liquid crystals” - M. Giese, J. C. De Witt, K. E. Shopsowitz, R. Y. Dong, C. A. Michal, W. Y. Hamad, M. J. MacLachlan, ACS Appl. Mater. Interfaces 2013, 5, 6854–6859. DOI: 10.1021/am402266z

(15) “Poly(p-phenylenevinylene) in chiral nematic mesoporous organosilica” - S. H. M. Mehr, M. Giese, H. Qi, K. E. Shopsowitz, W. Y. Hamad, M. J. MacLachlan, Langmuir 2013, 29, 12579–12584. DOI: 10.1021/la4024597

(14) “Pliable mesoporous photonic resins with tunable chiral nematic structures” - M. K. Khan, M. Giese, M. Yu, W. Y. Hamad, M. J. MacLachlan, Angew. Chem. Int. Ed. 2013, 52, 8921-8924, DOI: 10.1002/anie.201303829; Angew. Chem. 2013, 125, 9089–9092.

DOI: 10.1002/ange.201303829

(13) “Di-, tri- and tetra(pentafluorophenyl) derivatives for  oligotopic anion-π interactions” - M. Giese, M. Albrecht, S. Steike, A. Ackermann, A. Valkonen, K. Rissanen, Inorg. Chem. 2013, 52, 7666–7672. DOI: 10.1021/ic4008087

(12) “Anion-π interaction, an influential force in solid state molecular microstructures” - M. Giese, M. Albrecht, A. Valkonen, K. Rissanen, Eur. J. Org. Chem. 2013, 3247–3253. DOI: 10.1002/ejoc.201201704

Publications 2012

(11) “Cooperativity of H-bonding and anion-π interaction in the binding of anions with neutral π-acceptors” - M. Giese, M. Albrecht, T. Krappitz, M. Peters, V. Gossen, G. Raabe, A. Valkonen, K. Rissanen, Chem. Commun. 2012, 48, 9983–9985. DOI: 10.1039/C2CC34748B

(10) “Pentafluorophenyl salicylamine receptors in anion-π interaction studies” - M. Giese, M. Albrecht, C. Plum, D. Hintzen, A. Valkonen, K. Rissanen, Supramol. Chem. 2012, 24, 755761. DOI: 10.1080/10610278.2012.715648

(9) “Lanthanide(III) Complexes of bis-semicarbazone and bis-imine-substituted phenanthroline ligands: Solid-state structures, photophysical properties, and anion sensing” - S. Nadella, P. M. Selvakumar, E. Suresh, P. S. Subramanian, M. Albrecht, M. Giese, R. Fröhlich, Chem. Eur. J. 2012, 18, 16784–16792. DOI: 10.1002/chem.201201705  

(8) “Weak intermolecular anion–π interactions in pentafluorobenzyl-substituted ammonium betaines“ - M. Giese, M. Albrecht, K. Wiemer, G. Kubik, A. Valkonen, K. Rissanen, Eur. J. Inorg. Chem. 2012, 2995–2999. DOI: 10.1002/ejic.201200184

(7) “Controlling the position of an anion relative to a pentafluorophenyl group“ - M. Giese, M. Albrecht, K. Wiemer, A. Valkonen, K. Rissanen, New J. Chem. 2012, 1368–1372. DOI: 10.1039/C2NJ40089H

(6) "Geometrically diverse anions in anion-π interactions“ - M. Giese, M. Albrecht, G. Ivanova, A. Valkonen, K. Rissanen, Supramol. Chem. 2012, 24, 4855. DOI: 10.1080/10610278.2011.622384

Publications 2011

(5) “From attraction to repulsion: Anion-π interactions between bromide and fluorinated phenyl groups“ - M. Giese, M. Albrecht,  C. Bannwarth, G. Raabe, A. Valkonen, K. Rissanen, Chem. Commun.201147, 8542–8544. DOI: 10.1039/C1CC12667A

Publications 2010

(4) “CH-anion versus anion-π interactions in the crystal and in solution of pentafluorobenzyl phosphonium salts“ - M. Müller, M. Albrecht,  J. Sackmann, A. Hoffmann, F. Dierkes, A. Valkonen, K. Rissanen, Dalton Trans. 2010, 39, 11329–11334. DOI: 10.1039/C0DT00766H

(3) “Anion-π interactions in salts with polyhalide anions: Trapping of I42-“ - M. Müller, M. Albrecht, V. Gossen, T. Peters, A. Hoffmann, G. Raabe, A. Valkonen, K. Rissanen, Chem. Eur. J. 201016, 12446–12453. DOI: 10.1002/chem.201001534

(2) “Weak non-covalent interactions control the relative molecular orientation in the crystals of N-pentafluorobenzyl aniline derivatives“ - M. Albrecht, M. Müller, A. Valkonen, K. Rissanen, Cryst. Eng. Commun.  201012, 3698–3702. DOI: 10.1039/C003636F

(1) “CH-directed anion-π interactions in the crystals of pentafluorobenzyl substituted ammonium and pyridinium salts“ - M. Albrecht, M. Müller, O. Mergel, K. Rissanen, A. Valkonen, Chem. Eur. J.  201016, 5062–5069. DOI: 10.1002/chem.200903016

Book Chapters, Patents and further publications

(8) "Trendberichte Organische Chemie 2024 - Flüssigkristalle", M. Giese*, Nachrichten aus der Chemie 2024, 72, 51-52. [Link]

(7) "Trendberichte Organische Chemie 2023 - Flüssigkristalle", M. Giese*, Nachrichten aus der Chemie 2023, 71, 61-62. [Link]

(6) "Trendberichte Organische Chemie 2021 - Flüssigkristalle", M. Giese*, Nachrichten aus der Chemie 2022, 70, 45-46. [Link]

(5) "Wo schwache Kräfte sinnvoll walten", M. Giese*, J. Voskuhl*, J. Niemeyer*, UNIKATE 56, Universität Duisburg-Essen, 2021. [Link]

(4)   “Polymeric materials and composites with chiral nematic structures and preperation method thereof” US Patent Application No. 61/804,999, (filed date March 25, 2013) (M. J. MacLachlan, M. Giese, M. K. Khan).

(3)   “Chiral nematic materials derived from cellulose nanocrystals“ – M. Giese, M. J. MacLachlan in R. Moon (Ed.), Production and Applications of Cellulose Nanomaterials, in press.

(2)   Formelsammlung Chemie und PhysikM. Müller, Christiani Verlag, Konstanz, 2009[Link]

(1)   Periodensystem der ElementeM. Müller, Christiani Verlag, Konstanz, 2009[Link]