Coatings

Since laser-generated colloidal nanoparticles are highly charged, application of an electric field allows the deposition of the nanoparticles on surfaces in a process termed electrophoretic deposition (EPD). In this way, coating of three-dimensional surfaces is achievable within seconds to a few minutes. The electromobility of the colloidal metal and alloy particles has been studied and implant surfaces like electrodes and stents were modified using nanoparticle deposition aiming at improved longterm stability and cytocompatability of medical devices in the biological system.

 

Our main research goals and interests are:

  • Understanding to what extent the EPD process parameters influence the structure of the surfaces.
  • Elucidating to which degree the nanoparticle coatings alter the physical and chemical properties of the surfaces (e.g. contact angle, surface charge, impedance).
  • Can the improved properties of the coatings be used in in vitro and in vivo settings and can they, eventually, be transferred to the clinic ?

References:

[1] Ramesh, V.; Stratmann, N.; Schaufler, V.; Angelov, S. D.; Nordhorn, I. D.; Heissler, H. E.; Martinez-Hincapie, R.; Colic, V.; Rehbock, C.; Schwabe, K.; Karst, U.; Krauss, J. K.; Barcikowski, S. Mechanical Stability of Nano-Coatings on Clinically Applicable Electrodes, Generated by Electrophoretic Deposition. Advanced Healthcare Materials (2022), 11.

[2] Ramesh, V.; Giera, B.; Karnes, J. J.; Stratmann, N.; Schaufler, V.; Li, Y.; Rehbock, C.; Barcikowski, S. Electrophoretic Deposition of Platinum Nanoparticles using Ethanol-Water Mixtures Significantly Reduces Neural Electrode Impedance. Journal of the Electrochemical Society (2022) 169.

[3] Ramesh, V.; Rehbock, C.; Giera, B.; Karnes, J. J.; Forien, J. B.; Angelov, S. D.; Schwabe, K.; Krauss, J. K.; Barcikowski, S. Comparing Direct and Pulsed-Direct Current Electrophoretic Deposition on Neural Electrodes: Deposition Mechanism and Functional Influence. Langmuir (2021) 37, 9724-9734.

[4] S. Koenen, C. Rehbock, H.E. Heissler, S.D. Angelov, K. Schwabe, J.K. Krauss, S. Barcikowski, Optimizing in Vitro Impedance and Physico-Chemical Properties of Neural Electrodes by Electrophoretic Deposition of Pt Nanoparticles, Chemphyschem, 18 (2017) 1108-1117.

[5] S.D. Angelov, S. Koenen, J. Jakobi, H.E. Heissler, M. Alam, K. Schwabe, S. Barcikowski, J.K. Krauss, Electrophoretic deposition of ligand-free platinum nanoparticles on neural electrodes affects their impedance in vitro and in vivo with no negative effect on reactive gliosis, Journal of Nanobiotechnology, 14 (2016).

[6] S. Koenen, R. Streubel, J. Jakobi, K. Schwabe, J.K. Krauss, S. Barcikowski, Continuous Electrophoretic Deposition and Electrophoretic Mobility of Ligand-Free, Metal Nanoparticles in Liquid Flow, Journal of the Electrochemical Society, 162 (2015) D174-D179.

[7] C. Streich, S. Koenen, M. Lelle, K. Peneva, S. Barcikowski, Influence of ligands in metal nanoparticle electrophoresis for the fabrication of biofunctional coatings, Appl Surf Sci, 348 (2015) 92-99.