Personensuche
Personensuche
Es wurde 1 Person gefunden.
Fakultät für Mathematik
Anschrift
Thea-Leymann-Str. 9
45127 Essen
45127 Essen
Raum
WSC-O-4.46
Telefon
Telefax
E-Mail
Funktionen
-
Professor/in, Mathematik
Aktuelle Veranstaltungen
-
WiSe 2025
Vergangene Veranstaltungen (max. 10)
-
SoSe 2025
-
WiSe 2024
-
SoSe 2024
-
WiSe 2023
-
SoSe 2023
Die folgenden Publikationen sind in der Online-Universitätsbibliographie der Universität Duisburg-Essen verzeichnet. Weitere Informationen finden Sie gegebenenfalls auch auf den persönlichen Webseiten der Person.
-
Classification of global solutions to the obstacle problem in the planeIn: Advances in Mathematics, Jg. 472, 2025, 110276DOI (Open Access)
-
Complete classification of global solutions to the obstacle problemIn: Annals of Mathematics, Jg. 201, 2025, Nr. 1, S. 167 – 224DOI, Online Volltext (Open Access)
-
Rectifiability, finite Hausdorff measure, and compactness for non-minimizing Bernoulli free boundariesIn: Communications on Pure and Applied Mathematics, Jg. 78, 2025, Nr. 3, S. 545 – 591DOI (Open Access)
-
Existence, uniqueness, and convergence rates for gradient flows in the training of artificial neural networks with ReLU activationIn: Electronic Research Archive (ERA), Jg. 31, 2023, Nr. 5, S. 2519 – 2554DOI (Open Access)
-
On global solutions of the obstacle problemIn: Duke Mathematical Journal (DMJ), Jg. 172, 2023, Nr. 11, S. 2149 – 2193DOI, Online Volltext (Open Access)
-
The structure of the regular part of the free boundary close to singularities in the obstacle problemIn: Journal of Differential Equations, Jg. 377, 2023, S. 873 – 887DOI (Open Access)
-
Regularity of the free boundary for a parabolic cooperative systemIn: Calculus of Variations and Partial Differential Equations, Jg. 61, 2022, Nr. 4, 124DOI (Open Access)
-
A free boundary problem for an elliptic systemIn: Journal of Differential Equations, Jg. 284, 2021, S. 126 – 155
-
Characterizing compact coincidence sets in the obstacle problem : A short proofIn: St. Petersburg Mathematical Journal, Jg. 32, 2021, Nr. 4, S. 705 – 711DOI, Online Volltext (Open Access)
-
Characterizing compact coincidence sets in the thin obstacle problem and the obstacle problem for the fractional LaplacianIn: Nonlinear Analysis: Theory, Methods & Applications, Jg. 211, 2021, 112473DOI, Online Volltext (Open Access)
-
Remarks on the decay/growth rate of solutions to elliptic free boundary problems of obstacle typeIn: Mathematics in Engineering (MinE), Jg. 2, 2020, Nr. 4, S. 698 – 708DOI (Open Access)
-
Singularities in Axisymmetric Free Boundaries for ElectroHydroDynamic EquationsIn: Archive for Rational Mechanics and Analysis, Jg. 222, 2016, Nr. 2, S. 573 – 601DOI, Online Volltext (Open Access)
-
Equilibrium points of a singular cooperative system with free boundaryIn: Advances in Mathematics, Jg. 280, 2015, S. 743 – 771DOI, Online Volltext (Open Access)
-
Bernoulli Type Free Boundary Problems and Water WavesIn: Geometric Measure Theory and Free Boundary Problems: Cetraro, Italy 2019 / CIME summer school "Geometric Measure Theory and Free Boundary Problems, 02.-06.09.2019, Cetraro / Focardi, Matteo; Spadaro, Emanuele (Hrsg.). Cham: Springer, 2021, S. 89 – 136