Functional supramolecular systems

In general, our research focuses on the development of bi- and polyfunctional covalently linked and mechanically interlocked frameworks. In this context, we are currently pursuing the synthesis of bis‑1,1´‑binaphthyl-phosphoric acids using different strategies. On one hand, we perform a covalent coupling of two 1,1´-binaphthyl-phosphoric acids. On the other hand, we are investigating the incorporation of two 1,1´‑binaphthyl-phosphoric acids in interlocked catenane structures, thus resulting in bifunctional homo[2]catenanes.


Covalently linked phosphoric acids

In this research project, we are interested in the synthesis and application of covalently linked phosphoric acids.

We have generated a series of rigidly tethered bis-phosphoric acids, realizing that the nature of the tether has a profound influence on their properties. For an example of our synthetic work, please see our publications in Synthesis and J. Org. Chem.

This lead to the identification of one preferred bis-phosphoric acid, which can be used for the chemoselective detection of ferric ions. The presence of Fe3+  can be detected by fluorescence- and CD-spectroscopy, even in the presence of a variety of other metal ions. For details please see our current publications in Chemistry - A European Journal.

Recently, we have also used these systems for the binding and array-based detection of amino-acids. See our paper in Organic Letters and Chemistry - A European Journal!

Jn Research1


Mechanically interlocked molecules

This research project deals with the generation of functional interlocked molecules, such as catenanes and rotaxanes.

As a first example, we have reported a novel [2]catenane featuring two chiral 1,1´-binaphthyl-phosphoric acids. This catenane was successfully used as a receptor for chiral diamine-guests and is the first example for a chiral catenane-based catalyst. For more information, please check our articles in Chemical Communications , Angewandte Chemie and Chemical Science!

Recently, we have also extended this work towards the use of chiral rotaxanes for asymmetric catalysis (please check our publication in Angewandte Chemie).

For overviews on interlocked molecules in catalysis and cooperative organocatalysis see our Minireviews in SynlettNachrichten aus der Chemie , ChemCatChem and ChemPlusChem!

​​Jn Research2