Simulation turbulenter Verbrennung

Die turbulente Verbrennung von gasförmigen und flüssigen Medien ist Grundlage der Energiegewinnung in technischen Anlagen wie Gaskraftwerken, Kohlekraftwerken oder Verbrennungsmotoren. Die Steigerung der Effizienz von turbulenten Verbrennungsprozessen ist bezüglich Wirkungsgrad und Schadstoffemission ein wichtiger Bestandteil bei der Entwicklung von technischen Anlagen. Am Lehrstuhl für Fluiddynamik werden daher Methoden und Modelle entwickelt, die dem Verständnis der komplexen Prozesse der Verbrennung und der Interaktion von Strömung und Verbrennung dienen.

Die Modellierung erfolgt durch die Implementierung der physikalischen Modelle in unseren Inhouse Code PsiPhi, sowie durch die Erweiterung der quelloffenen CFD Software OpenFOAM durch die Einbindung neuer Bibliotheken und Strömungslöser. Die resultierenden Simulationsergebnisse werden mittels experimenteller oder analytischer Daten abgeglichen und somit die Modelle validiert. Die gewonnenen Resultate werden in Fachzeitschriften und auf Konferenzen publiziert.

Die folgenden Mitarbeiter bearbeiten derzeit die Projekte auf dem Gebiet turbulenter Verbrennung

  • Vahid Sharifi - Large Eddy Simulation of High frequency thermo acoustic instabiliy
  • Pascal Gruhlke - Large eddy simulations of pollutants (especially CO and NOx)
  • Eray Inanc -  Large eddy simulation of unsteady flames
  • Luis Cifuentes -  Analyses of interfaces in turbulent premixed flames
  • Seung-Jin Baik -  Large eddy simulation of stratified flames using FDF methods
  • Efim Borukhovich -  Large eddy simulation of nanoparticle synthesis

 

Ausgewählte Publikationen

  • Rieth, M., Chen, J.-Y., Menon, S., Kempf, A.M., (accepted 2018) A Hybrid Flamelet Finite-Rate Chemistry Approach for Efficient LES with a Transported FDF, Combustion and Flame.
  • Rieth, M., Rabacal, M., Kempf, A., Kronenburg, A., Stein, O. T., Carrier-phase DNS of biomass particle ignition and volatile burning in a turbulent mixing layer, Chemical Engineering Transactions 65 (2018) 37-42 PDF
  • Cifuentes L., Dopazo C., Anurag S., Chakraborty N. & Kempf A.M., Analysis of Flame Curvature Evolution in a Turbulent Premixed Bluff Body Burner. Physics of Fluids (2018)

  • Cifuentes L., Kempf A.M. & Dopazo C., Local entrainment velocity in a premixed turbulent annular jet flame. Proceedings of the Combustion Institute (2018)

  • Gruhlke, P., Mahiques, E. I., Dederichs, S., Proch, F., Beck, C., Kempf, A., Prediction of CO and NOx Pollutants In A Stratified Bluff Body Burner, Journal of Engineering for Gas Turbines and Power 140:10 (2018) 101502-101502-9.
  • Tufano, G., Stein, O. T., Wang, B., Kronenburg, A., Rieth, M., Kempf, A., Coal particle volatile combustion and flame interaction. Part I: Characterization of transient and group effects, Fuel 229 (2018) 262-269.
  • Rieth, M., Kempf, A., Kronenburg, A., Stein, O. T., Carrier-phase DNS of pulverized coal particle ignition and volatile burning in a turbulent mixing layer, Fuel 212 (2018) 364-374.
  • Rittler, A., Large eddy simulation of nanoparticle synthesis from spray flames, PhD Thesis (2017). PDF
  • Rieth, M. Large Eddy and Direct Numerical Simulation of Single and Multiphase Flows Relying on Lagrangian Particle Methods, PhD Thesis (2017). PDF
  • Pesmazoglou, I., Kempf, A., Navarro-Martinez, S., Large Eddy Simulation of Particle Aggregation in Turbulent Jets, Journal of Aerosol Science 111 (2017) 1-17.
  • Vascellari, M., Tufano, G., Stein, O. T., Kronenburg, A., Kempf, A., Scholtissek, A., Hasse, C., A flamelet/progress variable approach for modeling coal particle ignition, Fuel, 201 (2017) 29-38.
  • Tirunagari, R. R., Pettit, M. W., Kempf, A., Pope, S., A simple approach for specifying velocity inflow boundary conditions in simulations of turbulent opposed-jet flows, Flow Turbul. Combust. 98:1 (2017) 131-153.
  • Proch, F., Highly-resolved numerical simulation of turbulent premixed and stratified combustion under adiabatic and non-adiabatic conditions with tabulated chemistry, PhD Thesis (2017). PDF
  • Rieth, M., Proch, F., Clements, A. G., Rabaçal, M., Kempf, A., Highly resolved flamelet LES of a semi-industrial scale coal furnace, Proc. Combust. Inst. 36:3 (2017) 3371–3379.
  • Rieth, M., Clements, A. G., Rabaçal, M., Proch, F., Stein, O. T, Kempf, A., Flamelet LES modeling of coal combustion with detailed devolatilization by directly coupled CPD, Proceedings of the Combustion Institute, 36:2 (2017) 2181–2189.
  • Proch, F., Domingo, P., Vervisch, L., Kempf, A.,. Flame resolved simulation of a turbulent premixed bluff-body burner experiment. Part I: Analysis of the reaction zone dynamics with tabulated chemistry. Combust. Flame 180 (2017) 321-339. PDF
  • Proch, F., Domingo, P., Vervisch, L., Kempf, A., Flame resolved simulation of a turbulent premixed bluff-body burner experiment. Part II: A-priori and a-posteriori investigation of sub-grid scale wrinkling closures in the context of artificially thickened flame modeling, Combust. Flame 180 (2017) 340-350. PDF
  • Rittler, A., Deng, L., Wlokas, I., Kempf, A., Large eddy simulations of nanoparticle synthesis from flame spray pyrolysis, Proc. Combust. Inst. 36:1 (2017) 1077-1087.
  • Sellmann, J., Lai, J., Kempf, A., Chakraborty, N., Flame surface density based modelling of head-on quenching of turbulent premixed flames, Proc. Combust. Inst. 36:2 (2017) 1817-1825.
  • Inanc, E., Nguyen, T., Kaiser, S., Kempf, A., High-resolution LES of a starting jet, Computers & Fluids, 140 (2016) 435-449. PDF
  • Rieth, M., Proch, F., Rabaçal, M., Franchetti, B. M., Marincola, F. C., Kempf, A., Flamelet LES of a semi-industrial pulverized coal furnace, Combust. Flame, 173 (2016) 39-56.
  • Rittler, A., Proch, F., Kempf, A., LES of the Sydney piloted spray flame series with the PFGM/ATF approach and different sub-filter models, Combust. Flame 162:4 (2015) 1575-1598.
  • Proch, F., Pettit, M. W. A., Ma, T., Rieth, M., Kempf, A., Investigations on the Effect of Different Subgrid Models on the Quality of LES Results, in Direct and Large-Eddy Simulation IX, Springer, Cham (2015) 141-147.
  • Butz, D., Gao, Y., Kempf, A., Chakraborty, N., Large eddy simulations of a turbulent premixed swirl flame using an algebraic scalar dissipation rate closure. Combust. Flame 162:9 (2015) 3180-3196.
  • Proch, F., Kempf, A., Modeling heat loss effects in the large eddy simulation of a model gas turbine combustor with premixed flamelet generated manifolds, Proc. Combust. Inst. 35:3 (2015) 3337-3345.
  • Fiorina, B., Mercier, R., Kuenne, G., Ketelheun, A., Avdić, A., Janicka, J., Geyer, D., Dreizler, A., Alenius, E., Duwig, C., Trisjono, P., Kleinheinz, K., Kang, S., Pitsch, H., Proch, F., Marincola, F., Kempf, A., Challenging modeling strategies for LES of non-adiabatic turbulent stratified combustion, Combust. Flame, 162:11 (2015) 4264-4282.
  • Rieth, M., Proch, F., Stein, O. T., Pettit, M. W. A., Kempf, A., Comparison of the Sigma and Smagorinsky LES models for grid generated turbulence and a channel flow, Computers & Fluids 99 (2014) 172-181.
  • Ma, T., Gao, Y., Kempf, A, Chakraborty, N., Validation and implementation of algebraic LES modelling of scalar dissipation rate for reaction rate closure in turbulent premixed combustion, Combust. Flame 161:12 (2014) 3134-3153. PDF Link
  • Pesmazoglou, I., Kempf, A., Navarro-Martinez, S., Aerosol nucleation in a turbulent jet using Large Eddy Simulations, Chemical Engineering Science 116 (2014) 383-397.
  • Proch, F., Kempf, A., Numerical analysis of the Cambridge stratified flame series using artificial thickened flame LES with tabulated premixed flame chemistry, Combust. Flame 161:10 (2014) 2627-2646.
  • Rabhiou, A., Kempf, A., Heyes, A., Oxidation of divalent rare earth phosphors for thermal history sensing, Sensors and Actuators B: Chemical 177 (2013) 124-130.
  • Ma, T., Stein, O. T., Chakraborty, N., Kempf, A., A posteriori testing of algebraic flame surface density models for LES, Combustion Theory and Modelling 17:3 (2013) 431-482.
  • Marincola, F. C., Ma, T., Kempf, A., Large eddy simulations of the Darmstadt turbulent stratified flame series, Proc. Combust. Inst. 34:1 (2013) 1307-1315.
  • Franchetti, B. M., Marincola, F. C., Navarro-Martinez, S., Kempf, A., Large eddy simulation of a pulverised coal jet flame, Proc. Combust. Inst., 34:2 (2013) 2419-2426.

 

  • Olbricht, C., Stein, O. T., Janicka, J., van Oijen, J. A., Wysocki, S., Kempf, A., LES of lifted flames in a gas turbine model combustor using top-hat filtered PFGM chemistry, Fuel, 96 (2012) 100-107.
  • Kempf, A., Wysocki, S., Pettit, M., An efficient, parallel low-storage implementation of Klein’s turbulence generator for LES and DNS, Computers & Fluids 60 (2012) 58-60.
  • Pettit, M. W. A., Coriton, B., Gomez, A., Kempf, A., Large-eddy simulation and experiments on non-premixed highly turbulent opposed jet flows, Proc. Combust. Inst. 33:1 (2011) 1391-1399.
  • Kempf, A., Lindstedt, R. P., Janicka, J., Large-eddy simulation of a bluff-body stabilized nonpremixed flame, Combust. Flame, 144:1 (2006) 170-189. 
  • Kempf, A., Klein, M., Janicka, J., Efficient generation of initial-and inflow-conditions for transient turbulent flows in arbitrary geometries, Flow Turbl. Combust. 74:1 (2005) 67-84.

 

Illustration des Kohlenstoffdioxidanteils nahe des Brennerbereiches.

Darstellung der Cambridge
geschichteten Flamme.

 

Simulierte OH Konzentration der
Sydney Bluff-Body Flamme.