Publikationen und Preprints:

 

  • F. Cagliari, M. Ferri and P. Pozzi
    Size functions from a categorical viewpoint
     Acta Appl. Math. 67 (2001), no. 3, 225-235
  • P. Pozzi
    L2- estimate for the discrete Plateau Problem
     Math. Comp. 73 (2004), no. 248, 1763-1777
  • P. Pozzi
    The discrete Douglas Problem: theory and numerics
    Interfaces Free Bound. 6 (2004), no. 2, 219-252
  • P. Pozzi
    The discrete Douglas Problem: convergence results
    IMA J. Numer. Anal. 25 (2005), no. 2, 337-378
  • M. Hegland and P. Pozzi
    Concentration of measure and the approximation of functions of many variables
    Mathematical methods for curves and surfaces: Tromsø, 2004, 199-212,
    Mod. Methods Math., Nashboro Press, Brentwood, TN, 2005
  • P. Pozzi
    Anisotropic curve shortening flow in higher codimension
    Math. Methods  Appl. Sci. 30 (2007), no. 11, 1243-1281
  • P. Pozzi
    Anisotropic mean curvature flow for two dimensional surfaces in higher codimension: a numerical scheme
    Interfaces Free Bound. 10 (2008), no. 4, 539-576
  • P. Pozzi
    Anisotropic mean curvature flow in higher codimension
    Proc. Appl. Math. Mech. 8 (2008), no. 1, 10849-10850
  • P. Pozzi
    On the gradient flow for the anisotropic area functional
    Math. Nachr. 285 (2012), no. 5-6, 707-726
  • P. Pozzi, Ph.Reiter  
    Willmore-type regularization of mean curvature flow in the presence of a non-convex anisotropy. The graph setting: analysis of the stationary case and numerics for the evolution problem
     Adv. Differential Equations 18 (2013), no. 3-4, 265-308 
  • P. Pozzi, Ph. Reiter
    Approximation of non-convex anisotropic energies via Willmore energy, CD-ROM Proceedings of the 6th European Congress on
    Computational Methods in Applied Sciences and Engineering (ECCOMAS 2012), September 10-14, 2012, Vienna, Austria, Eds.: Eberhardsteiner, J.; Böhm, H.J.; Rammerstorfer, F.G., Publisher: Vienna University of Technology, Austria,ISBN:978-3-9502481-9-7.  
  • A. Dall'Acqua, P. Pozzi
    A Willmore-Helfrich L2-flow of curves with natural boundary conditions.
    Comm. Anal. Geom. 22 (2014), no.4, 617--669.
    (Preprint version: ArXiv:1211.0949 )
  • R. Perl, P. Pozzi, and M. Rumpf
    A nested variational time discretization for parametric anisotropic willmore flow.
    In: Singular Phenomena and Scaling in Mathematical Models, M. Griebel editor, Springer 2014.
  • A. Dall'Acqua, C.-C. Lin, P. Pozzi
    Evolution of open elastic curves in Rn subject to fixed length and natural boundary conditions.
    Analysis (Berlin) 34 (2014), no.2, 209-222.
  • P. Pozzi
    Computational anisotropic Willmore flow.
    Interfaces Free Bound. 17 (2015), no. 2, 189-232.
  • A. Dall'Acqua, C.-C. Lin, P. Pozzi
    A gradient flow for open elastic curves with fixed length and clamped ends.
    Ann. Sc. Norm. Super. Pisa Cl. Sci. (5) Vol. XVII (2017), 1031-1066.
  • A. Dall'Acqua, P. Pozzi
    On a Willmore-Helfrich L2-flow of open curves in Rn: a different approach.
    RIMS Kokyuroku,1974, (2015) 68-82.
  • P. Pozzi, Ph. Reiter
    On non-convex anisotropic surface energy regularized via the Willmore functional: the two-dimensional graph setting.
    ESAIM: Control, Optimisation and Calculus of Variations 23 (2017) 1047-1071.
    DOI: http://dx.doi.org/10.1051/cocv/2016024
  • P. Pozzi, B. Stinner
    Curve shortening flow coupled to lateral diffusion.
    Numer. Math. 135 (2017), no. 4, 1171-1205 ( DOI 10.1007/s00211-016-0828-8),
    (Preprint version: arXiv:1510.06173)
  • A. Dall'Acqua, P. Pozzi, A. Spener
    The Lojasiewicz-Simon gradient inequality for open elastic curves.
    J. Differential Equations, 261 (2016), no. 3, 2168–2209.
    doi: 10.1016/j.jde.2016.04.027 .
    (Preprint version: arXiv:1604.07559)
  • G. Mercier, M. Novaga, P. Pozzi
    Anisotropic curvature flow of immersed curves.
    Comm.  Anal. Geom. 27 (2019), no. 4, 937-964.
    (Preprint version: arXiv:1605.07860)
  • U. Dierkes, T. Jenschke, P. Pozzi
    Approximation of minimal surfaces with free boundaries.
    Interfaces Free Bound. 20 (2018), no. 4, 551–576.
    (Preprint version 2017: SM-UDE-813)
  • P. Pozzi, B. Stinner
    Elastic flow interacting with a lateral diffusion process: The one-dimensional graph case.
    IMA Journal of Numerical Analysis, Volume 39, Issue 1, January 2019, Pages 201–234, https://doi.org/10.1093/imanum/dry004
    (Preprint version: arXiv:1707.08643)
  • Anna Dall’Acqua, Tim Laux, Chun-Chi Lin, Paola Pozzi, Adrian Spener
    The elastic flow of curves on the sphere.
    Geom. Flows 3 (2018), 1-13.
  • S. Okabe, P. Pozzi, G. Wheeler
    A gradient flow for the p-elastic energy defined on closed planar curves.
    Math. Ann. (2019). https://doi.org/10.1007/s00208-019-01885-6
    (Preprint version: arXiv:1811.06608)
  • A. Dall'Acqua, C.-C. Lin, P. Pozzi
    Elastic flow of networks: long-time existence result.
    Accepted for publication in Geometric Flows .
    (Preprint version: arXiv:1812.11367)
  • M. Novaga, P. Pozzi
    A second order gradient flow of p-elastic planar networks.
    Accepted for publication in the SIAM Journal on Mathematical Analysis.
    (Preprint version: arXiv:1905.06742)
  • M. Novaga, P. Pozzi
    Uniqueness for a second order gradient flow of elastic networks.
    (Preprint 2019, for Proceedings ENUMATH2019)
  • P. Pozzi, B. Stinner
    A converging finite element scheme for motion by curvature of a network with a triple junction.
    (Preprint 2019: arXiv:1911.09636)
  • A. Dall'Acqua, C.-C. Lin, P. Pozzi
    Elastic flow of networks: short-time existence result.
    (Preprint 2019: arXiv:1912.09626)

Research Reports:

  • P. Pozzi: On anisotropic Willmore Flow, Oberwolfach Reports, Volume 55, 2015, (DOI: 10.4171/OWR/2015/55).
  • P. Pozzi: On the flow of elastic networks, Oberwolfach Reports, Volume 3, 2019, (DOI: 10.4171/OWR/2019/3).