Lamaczbild  Dr. Agnes Lamacz-Keymling
  AG Optimal Control of
  Partial Differential Equations

  Universität Duisburg-Essen

  Thea-Leymann-Straße 9
  D-45127 Essen
  Tel:+49 201 183 6893

  Raum: WSC-W-4.18 (Essen), BC 513 (Duisburg)

Research Interests

  • Analysis of PDEs
  • Multiscale problems and homogenization
  • Wave phenomena

Academic Records

Oct. 2017- Akademische Rätin, University Duisburg-Essen
Oct 2014-Sep 2017 Akademische Rätin a.Z., TU Dortmund
Mar 2014-Sep 2014 Postdoc, CASA, TU Eindhoven
Oct 2012-Feb 2014 Postdoc, TU Dortmund
Apr 2012-Sep 2012 Max Planck Institute for Mathematics
in the Sciences, Leipzig
Sep 2011-Mar 2012 Postdoc, TU Dortmund
July 2008-Aug 2011 Research Assistant, TU Dortmund


Sep 2011 Ph.D. in Mathematics, TU Dortmund
June 2008 Diploma in Mathematics, TU Dortmund


Lehre im WS 21/22

  • Mathematik E3
  • Mathematik E4


[16] A. Lamacz-Keymling and I. Yousept. High-order homogenization in optimal control by the Bloch wave method. Accepted for publication in ESAIM:COCV (2021)  Preprint

[15] G. Allaire,  A. Lamacz, J. Rauch. Crime Pays; Homogenized Wave Equations for Long Times. Accepted for publication in Asymptotic Analysis (2020) Preprint

[14] P.Donato, A. Lamacz-Keymling and B. Schweizer. Sound absorption by perforated walls along boundaries.  Applicable Analysis (2020) Preprint

[13] A. Lamacz and B. Schweizer. Representation of solutions to wave equations with profile functions. Analysis and Applications 18 (2020), no. 06, 1001-1024 Preprint

[12] M. H. Duong, A. Lamacz, M. A. Peletier, A. Schlichting, U. Sharma. Quantification of coarse-graining error in Langevin and overdamped Langevin dynamics.  Nonlinearity 31(2018), no. 10, 4517-4566 Preprint 

[11]  A. Lamacz and B. Schweizer: Outgoing wave conditions in photonic crystals and transmission properties at interfaces. ESAIM : Math. Model. Numer. Anal. 52(2018), no. 5, 1913-1945 Preprint

[10] M. H. Duong, A. Lamacz, M. A. Peletier and U. Sharma: Variational approach to coarse-graining of generalized gradient flows. Calc. Var. 56: 100. (2017) Full text

[9] A. Lamacz and B. Schweizer: Effective acoustic properties of a meta-material consisting of small Helmholtz resonators.  Discrete Contin. Dyn. Syst. Ser. S 10 (2017), no. 4, 815-835  Preprint 

[8] A. Lamacz and B. Schweizer: A negative index meta-material for Maxwell´s equations. SIAM J. Math. Anal. 48 (2016), no. 6, 4155–4174  Preprint

[7] A. Lamacz, S. Neukamm and F. Otto: Moment bounds for the corrector in stochastic homogenization of a percolation model. Electron. J. Probab. 20 (2015), no.106, 1-30 Preprint

[6] T. Dohnal, A. Lamacz and B. Schweizer: Dispersive homogenized models and coefficient formulas for waves in general periodic media. Asymptotic Analysis 93 (2015), no.1-2, 21-49 Preprint

[5] T. Dohnal, A. Lamacz and B. Schweizer: Bloch-wave homogenization on large time scales and dispersive effective wave equations. Multiscale Model. Simul. 12 (2014), no.2, 488-513 Preprint

[4] A. Lamacz and B. Schweizer: Effective Maxwell equations in a geometry with flat rings of arbitrary shape. SIAM J. Math. Anal. 45 (2013), no.3, 1460-1494 Preprint

[3] Lamacz, A. Passerini and G. Thäter: Natural convection in horizontal annuli: evaluation of the error for two approximations. GEM Int. J. Geomath. 2 (2011), no.2, 307–323 Full text

[2] A. Lamacz, A. Rätz and B. Schweizer: A well-posed hysteresis model for flows in porous media and applications to fingering effects. Adv. Math. Sci. Appl.21 (2011), no.1, 33–64 Preprint

[1] A. Lamacz: Dispersive effective models for waves in heterogeneous media. Math. Models Methods Appl. Sci. 21 (2011), no.9, 1871–1899 Preprint


  • A. Lamacz: Waves in heterogeneous media: long time behavior and dispersive models. PhD Thesis, TU Dortmund (2011) Thesis
  • A. Lamacz: Natural convection in horizontal annuli with large aspect ratio. Diploma thesis, TU Dortmund (2008)


  • DFG-Projekt: Wellenausbreitung in periodischen Strukturen und Mechanismen negativer Brechung.  Antrag mit P. Henning, M. Ohlberger und B. Schweizer (2014)