Prof. Dr. Irwin Yousept
Universität Duisburg-Essen
Thea-Leymann-Straße 9
D-45127 Essen
+49 201 183 6894
Email: irwin.yousept[at]uni-due.de

Research Interests

Optimal Control of Partial Differential Equations
Maxwell's Equations and Electromagnetic Waves
Theory and Numerics of Partial Differential Equations
Inverse Problems governed by Partial Differential Equations

Academic Records

Aug. 2014 - Full Professor (W3), University Duisburg-Essen
Jan. 2019 - April 2019

Visiting Professor, Chinese University of Hong Kong

July  2012 - July 2014

Junior Professor (W1), Technical University Darmstadt

Oct. 2009 - June 2012 Postdoc, MATHEON, Technical University of Berlin

Oct. 2008 - Sep. 2009

Guest W2-Professor, University of Augsburg

June 2006 - July 2008 Research Assistant, MATHEON, Technical University of Berlin

Studies

Aug. 2008 Promotion in Mathematik, Technical University of Berlin
Oct. 2005 Diplom in Mathematik, Technical University of Berlin

Scientific Awards

2014 Richard-von-Mises-Preis GAMM - International Association of Applied Mathematics and Mechanics
2013 Dimitrie Pompeiu Prize Academy of Romanian Scientists
2006 Erwin Stephan Prize Technical University of Berlin
2005 Dies Mathematicus Prize Technical University of Berlin

Editorial Works

Since 2019 Associate Editor for Applicable Analysis
Since 2018 Associate Editor for Results in Applied Mathematics

Research Projects


Multi-Physics Phenomena in High-Temperature Superconductivity: Analysis, Numerics and Optimization
DFG-Project YO 159/2-2 (2020 - 2023)
PI: Irwin Yousept


Optimization of Non-smooth Hyperbolic Maxwell's Equations in Type-II Superconductivity Based on the Bean Critical State Model
DFG-Project YO 159/2-1 (2017 - 2020)
PI: Irwin Yousept

Publications


[25] Malte Winckler and Irwin Yousept: Fully discrete scheme for Bean's critical-state model with temperature effects in superconductivity [PDF] SIAM Journal on Numerical Analysis, to appear, 2019


[24] Irwin Yousept: Hyperbolic Maxwell Variational Inequalities of the Second Kind [PDF]
ESAIM: COCV, DOI:10.1051/cocv/2019015, 2019


[23] De-Han Chen and Irwin Yousept: Variational Source Condition for Ill-Posed Backward Nonlinear Maxwell's Equations [PDF] Inverse Problems 35(2): 025001, 2019


[22] Irwin YouseptOptimal Control of Non-Smooth Hyperbolic Evolution Maxwell Equations in Type-II Superconductivity [PDF] SIAM Journal on Control and Optimization 55(4):2305-2332, 2017


[21] Irwin Yousept:  Hyperbolic Maxwell Variational Inequalities for Bean's Critical-State Model in Type-II Superconductivity [PDF] SIAM Journal on Numerical Analysis 55(5): 2444-2464, 2017


[20] Irwin Yousept and Jun ZouEdge element method for optimal control of stationary Maxwell system with Gauss Law [PDF] SIAM Journal on Numerical Analysis 55(6): 2787-2810, 2017


[19] Dirk Pauly and Irwin YouseptA Posteriori Error Analysis for the Optimal Control of Magneto-Static Fields
ESAIM: M2AN 51(6): 2159-2191, 2017


[18] Vera Bommer and Irwin YouseptOptimal Control of the Full Time-Dependent Maxwell Equations
ESAIM: M2AN 50(1):237–261, 2016.


[17]  Michael Hintermüller; Antoine Laurain; Irwin YouseptShape Sensitivities for an Inverse Problem in Magnetic Induction Tomography Based on the Eddy Current Model Inverse Problems, 31 (2015) 065006 (25pp)


[16]  Ronald H.W. Hoppe and Irwin YouseptAdaptive edge element approximation of H(curl)-elliptic optimal control problems with control constraints BIT Numerical Mathematics 55:255-277, 2015


[15]  J.C. Delos Reyes and Irwin YouseptOptimal control of electrorheological fluids through the action of electric field Computational Optimization and Applications, DOI 10.1007/s10589-014-9705-5, 2015


[14] Irwin Yousept: Optimal bilinear control of eddy current equations with grad-div regularization
 J. Numer. Math. 23 (1):81–98, 2015


[13] Irwin Yousept: Optimal Control of Quasilinear H(curl)-Elliptic Partial Differential Equations in Magnetostatic Field Problems [PDF] SIAM Journal on Control and Optimization 51(5), 3624-3651, 2013


[12] Irwin Yousept: Optimal control of Maxwell's equations with regularized state constraints
Computational Optimization and Applications 52(2), 559-581, 2012


[11] Irwin Yousept: Finite element analysis of an optimal control problem in the coefficients of time-harmonic eddy current equations Journal of Optimization Theory and Applications 154(3), 879-903, 2012


[10] Fredi Tröltzsch and Irwin Yousept: PDE-constrained optimization of time-dependent 3D electromagnetic induction heating by alternating voltages ESAIM: M2AN 46, 709-729, 2012


[9] P.-E. Druet; O. Klein; J. Sprekels; F. Tröltzsch; I. Yousept
Optimal control of 3D state-constrained induction heating problems with nonlocal radiation effects. 
SIAM Journal on Control and Optimization  49(4): 1707-1736, 2011


[8] Irwin Yousept: Optimal control of a nonlinear coupled electromagnetic induction heating system with pointwise state constraints Ann. Acad. Rom. Sci. Ser. Math. Appl. 2(1): 45-77, 2010


[7] Michael Hintermüller and Irwin Yousept: A sensitivity-based extrapolation technique for the numerical solution of state-constrained optimal control problems ESAIM: COCV 16(3): 503-522, 2010


[6] Christian Meyer and Irwin YouseptState-constrained optimal control of semilinear elliptic equations with nonlocal radiation interface conditions SIAM Journal on Control and Optimization 48(2): 734-755, 2009


[5] Christian Meyer and Irwin Yousept: Regularization of state-constrained elliptic optimal control problems with nonlocal radiation interface conditions. Computational Optimization and Applications 44(2): 183-212, 2009


[4] Juan Carlos Delos Reyes and Irwin Yousept: Regularized state-constrained boundary optimal control of the Navier-Stokes equations Journal of Mathematical Analysis and Applications 356(1): 257-279, 2009


[3] Fredi Tröltzsch and Irwin YouseptA regularization method for the numerical solution of elliptic boundary control problems with pointwise state constraints Computational Optimization and Applications 42(1): 43-66, 2009 


[2] Fredi Tröltzsch and Irwin YouseptSource representation strategy for optimal boundary control problems with state constraints Zeitschrift für Analysis und ihre Anwendungen (ZAA)  28(2): 189-203, 2009


[1] Michael Hintermüller and Fredi Tröltzsch and Irwin Yousept: Mesh independence of semismooth Newton methods for Lavrentiev-regularized state constrained optimal control problems. Numerische Mathematik 108(4): 571-603, 2008

Lecture Notes (in German)