Overview of project A02
Charge Carrier Dynamics in Nanostructures
This project aims at the theoretical description of the dynamics of single electrons in nanodevices in the time domain. The focus on single electrons defines the ultimate conceivable resolution for charge carrier dynamics, provides a convenient platform to study fundamental relaxation processes, and may become relevant for single-electron applications. Nanodevices such as quantum dots are well suited for studying charge carrier dynamics in this ultimate limit since they allow one to address individual electrons, to isolate them from the outside world, to manipulate them in a controlled way by gate voltages, and to study interesting correlations due to Coulomb interaction. The time domain of the charge carrier dynamics can be accessed by making use of external stimuli such as gate pulses. An alternative approach is based on analyzing the full counting statistics of individual charge-transfer events since the full counting statistics provides the maximum information of a dynamic quantum system. The theoretical challenge is, then, to distill out of this full counting statistics the relevant information about the charge dynamics to gain insight into relaxation channels, coherent quantum oscillations, or nonequilibrium many-body states evoked by interaction-induced correlations.
Figure: The charge dynamics in a single-level quantum dot tunnel coupled to one or several electron reservoirs and with large charging energy can be modelled by a three-state system.
Publications
2021
Jürgen König and Alfred Hucht
Newton Series Expansion of Bosonic Operator Functions
SciPost Physics 10, 007 (2021)
DOI: 10.21468/SciPostPhys.10.1.007
2020
Simon Mundinar, Alfred Hucht, Jürgen König and Stephan Weiß
Interaction-Induced Current Asymmetries in Resonant Transport through Interacting Quantum-Dot Spin Valves Revealed by Iterative Summation of Path Integrals
Phys. Rev. B 102, 045404 (2020)
DOI: 10.1103/PhysRevB.102.045404
Philipp Stegmann, Jürgen König and Björn Sothmann
Relaxation Dynamics in Double-Spin Systems
Phys. Rev. B 101, 075411 (2020)
DOI: 10.1103/PhysRevB.101.075411
Martin Maurer, Jürgen König and Herbert Schoeller
Multilevel Coherences in Quantum Dots
Phys. Rev. Research 2, 033440 (2020)
DOI: 10.1103/PhysRevResearch.2.033440
2019
Simon Mundinar, Philipp Stegmann, Jürgen König and Stephan Weiß
Iterative Path-Integral Summations for the Tunneling Magnetoresistance in Interacting Quantum-Dot Spin Valves
Phys. Rev. B 99, 195457 (2019)
DOI: 10.1103/PhysRevB.99.195457
Annika Kurzmann, Philipp Stegmann, Jens Kerski, R. Schott, A. Ludwig, A. D. Wieck, Jürgen König, Axel Lorke and Martin Geller
Optical Detection of Single-Electron Tunneling into a Semiconductor Quantum Dot
Phys. Rev. Lett. 122, 247403 (2019)
DOI: 10.1103/PhysRevLett.122.247403
2018
Philipp Stegmann, Jürgen König and Stephan Weiß
Coherent Dynamics in Stochastic Systems Revealed by Full Counting Statistics
Phys. Rev. B 98, 035409 (2018)
DOI: 10.1103/PhysRevB.98.035409
Eric Kleinherbers, Philipp Stegmann and Jürgen König
Revealing Attractive Electron-Electron Interaction in a Quantum Dot by Full Counting Statistics
New J. Phys. 20, 073023 (2018)
DOI: 10.1088/1367-2630/aad14a
2017
Philipp Stegmann and Jürgen König
Violation of Detailed Balance for Charge-Transfer Statistics in Coulomb-Blockade Systems
phys. stat. sol. (B) 254, 1600507 (2017)
DOI: 10.1002/pssb.201600507
Philipp Stegmann and Jürgen König
Inverse Counting Statistics Based on Generalized Factorial Cumulants
New J. Phys. 19, 023018 (2017)
DOI: 10.1088/1367-2630/aa5a70