Overview of project A02

Charge Carrier Dynamics in Nanostructures

König

This project aims at the theoretical description of the dynamics of single electrons in nanodevices in the time domain. The focus on single electrons defines the ultimate conceivable resolution for charge carrier dynamics, provides a convenient platform to study fundamental relaxation processes, and may become relevant for single-electron applications. Nanodevices such as quantum dots are well suited for studying charge carrier dynamics in this ultimate limit since they allow one to address individual electrons, to isolate them from the outside world, to manipulate them in a controlled way by gate voltages, and to study interesting correlations due to Coulomb interaction. The time domain of the charge carrier dynamics can be accessed by making use of external stimuli such as gate pulses. An alternative approach is based on analyzing the full counting statistics of individual charge-transfer events since the full counting statistics provides the maximum information of a dynamic quantum system. The theoretical challenge is, then, to distill out of this full counting statistics the relevant information about the charge dynamics to gain insight into relaxation channels, coherent quantum oscillations, or nonequilibrium many-body states evoked by interaction-induced correlations.

figure A2

Figure: The charge dynamics in a single-level quantum dot tunnel coupled to one or several electron reservoirs and with large charging energy can be modelled by a three-state system.

Publications

2019

Simon Mundinar, Philipp Stegmann, Jürgen König and Stephan Weiß
Iterative Path-Integral Summations for the Tunneling Magnetoresistance in Interacting Quantum-Dot Spin Valves
Phys. Rev. B 99, 195457 (2019)
DOI: 10.1103/PhysRevB.99.195457

Annika Kurzmann, Philipp Stegmann, Jens Kerski, , R. Schott, A. Ludwig, A. D. Wieck, Jürgen König, Axel Lorke, Martin Geller
Optical Detection of Single-Electron Tunneling into a Semiconductor Quantum Dot
Phys. Rev. Lett. 122, 247403 (2019)
DOI: 10.1103/PhysRevLett.122.247403

P. Stegmann, J. König and B. Sothmann
Relaxation Dynamics in Magnetic Double-Domain Systems

 

2018

Philipp Stegmann, Jürgen König and Stephan Weiß
Coherent Dynamics in Stochastic Systems Revealed by Full Counting Statistics
Phys. Rev. B 98, 035409 (2018)
DOI: 10.1103/PhysRevB.98.035409

Eric Kleinherbers, Philipp Stegmann and Jürgen König
Revealing Attractive Electron-Electron Interaction in a Quantum Dot by Full Counting Statistics
New J. Phys. 20, 073023 (2018)
DOI: 10.1088/1367-2630/aad14a
 

2017

Philipp Stegmann and Jürgen König
Violation of Detailed Balance for Charge-Transfer Statistics in Coulomb-Blockade Systems
phys. stat. sol. (B) 254, 1600507 (2017)
DOI: 10.1002/pssb.201600507

Philipp Stegmann and Jürgen König
Inverse Counting Statistics Based on Generalized Factorial Cumulants
New J. Phys. 19, 023018 (2017)
DOI: 10.1088/1367-2630/aa5a70