Forschung

Der Fokus unserer Forschungsarbeiten liegt in der numerischen Simulation von reaktiven Strömungen. Dafür werden numerische Modelle und Methoden entwickelt, die zur Beschreibung und Simulation der turbulenten Verbrennung von Mehrphasenströmungen, Reaktionskinetik und Reaktionsmechanismen, von Verbrennungsmotoren und der Nanopartikelsynthese notwendig sind. Weitere Informationen sind auf den spezifischen Forschungsseiten zu finden.

 

Turbulente Verbrennung
Die Forschung auf dem Feld turbulenter Verbrennung dient der Entwicklung von Methoden und Modellen, die zu einem besseren Verständnis der komplexen Prozesse in Verbrennung und der Interaktion von Strömung und Verbrennung, beitragen.

Mehrphasenströmungen
Multiphasenströmungen, bestehend aus einer kontinuierlichen und einer dispersen Phase, z.B. Gasphase-Flüssigphase (Spray-Verbrennung) oder Gasphase-Festkörper (Kohleverbrennung, Nanopartikelsynthese), werden am Lehrstuhl für Fluiddynamik mittels Euler-Lagrange oder Euler-Euler Methoden beschrieben. Dabei werden Modelle entwickelt, die die Interaktion der Phasen untereinander sowie das Verhalten der einzelnen Phasen beschreiben.

Reaktionskinetik und Reaktionsmechanismen
Zur genauen Beschreibung der chemischen und physikalischen Vorgänge in Flammen und Synthesereaktoren ist eine Modellierung der detaillierten Reaktionskinetik unerlässlich. Ein Reaktionsmechanismus ist die Abfolge von Elementarreaktionen, die auf einem molekularen Niveau vorkommen und den gesamten chemischen Prozess beschreiben. Wegen der enormen rechnerischen Kosten ist eine direkte Verwendung dieser komplexen Reaktionsmechanismen bei der Simulation reaktiver Strömungen nicht möglich. Die Reduktion dieser Mechanismen ist daher ein Schwerpunkt unserer Forschungsinteressen.

Verbrennungsmotoren
Zur Entwicklung effizienter und schadstoffarmer Verbrennungsmotoren ist eine detaillierte Beschreibung und ein tiefes Verständnis von innermotorischen Strömungs- und Reaktionsprozessen von entscheidender Bedeutung. Finite Volumen Methoden auf der Basis quell-offener Programme werden zur Simulation dieser Prozesse eingesetzt. Außerdem werden Modelle entwickelt die der genauen Beschreibung der innermotorischen Prozesse dienen.

Nanopartikelsynthese
Nanopartikel bilden die Grundlage vieler neuartiger Materialien. Am IVG werden Methoden entwickelt solche Partikel durch Gasphasen-Prozesse in Strömungsreaktoren herzustellen. Die Modellierung und Simulation der partikelbeladenen, chemisch reagierenden Strömung ist zum Verständnis der Prozesse, zum Entwurf von Reaktoren und zur Lösung von Skalierungsproblemen unerlässlich. Diese Modelle und Methoden werden am Lehrstuhl für Fluiddynamik entwickelt.

Entwicklung von Verfahren zur modularen Energierückgewinnung aus metallurgischen Prozessen (E-Rück), EN/3018

Durch die Energiewende und die daraus resultierenden Impulse neue Quellen zur Stromerzeugung zu erschließen gewinnt die Nutzung von Abfallwärme zunehmend an Bedeutung. Prozesse der Stahlerzeugung und -umformung sind bereits bei 700-1000°C abgeschlossen, wie in Abbildung 1 exemplarisch dargestellt. Die Restwärme der Produkte wird ungenutzt in die Umwelt entlassen und ist somit eine brachliegende Ressource mit einem hohen exergetischen Potential. Schon eine teilweise Umwandlung in elektrische Energie führte zu einer erheblichen Vermeidung äquivalenter Stromerzeugung aus primären Energieträgern. Das ökonomische Potenzial lässt daher einen großen Markt für entsprechende Strahlungswärmewandler erwarten.

Ausgewählte Publikationen

  • Rieth, M., Chen, J.-Y., Menon, S., Kempf, A.M., (accepted 2018) A Hybrid Flamelet Finite-Rate Chemistry Approach for Efficient LES with a Transported FDF, Combustion and Flame.
  • Tufano, G., Stein, O. T., Wang, B., Kronenburg, A., Rieth, M., Kempf, A. M., (accepted 2018) Coal particle volatile combustion and flame interaction. Part II: Effects of particle Reynolds number and turbulence, Fuel.
  • Cifuentes L., Dopazo C., Anurag S., Chakraborty N. & Kempf A.M., Analysis of Flame Curvature Evolution in a Turbulent Premixed Bluff Body Burner. Physics of Fluids (2018)

  • Cifuentes L., Kempf A.M. & Dopazo C., Local entrainment velocity in a premixed turbulent annular jet flame. Proceedings of the Combustion Institute (2018)

  • Grauer, S. J., Unterberger, A., Rittler, A., Daun, K. J., Kempf, A. M., Mohri, K., Instantaneous 3D flame imaging by backgrounded-orientated schlieren tomography, Combust. Flame 196 (2018) 284 - 299.
  • Rieth, M., Rabacal, M., Kempf, A., Kronenburg, A., Stein, O. T., Carrier-phase DNS of biomass particle ignition and volatile burning in a turbulent mixing layer, Chemical Engineering Transactions 65 (2018) 37-42 PDF
  • Gruhlke, P., Mahiques, E. I., Dederichs, S., Proch, F., Beck, C., Kempf, A., Prediction of CO and NOx Pollutants In A Stratified Bluff Body Burner, Journal of Engineering for Gas Turbines and Power 140:10 (2018) 101502-101502-9.
  • Janbazi, H., Hasemann, O., Schulz, C., Kempf, A., Wlokas, I., Peukert, S., Response surface and group additivity methodology for estimation of thermodynamic properties of organosilanes, International Journal of Chemical Kinetics (2018) 1–10.
  • Tufano, G., Stein, O. T., Wang, B., Kronenburg, A., Rieth, M., Kempf, A., Coal particle volatile combustion and flame interaction. Part I: Characterization of transient and group effects, Fuel 229 (2018) 262-269.
  • Rieth, M., Kempf, A., Kronenburg, A., Stein, O. T., Carrier-phase DNS of pulverized coal particle ignition and volatile burning in a turbulent mixing layer, Fuel 212 (2018) 364-374.
  • Rittler, A., Large eddy simulation of nanoparticle synthesis from spray flames, PhD Thesis (2017). PDF
  • Rieth, M. Large Eddy and Direct Numerical Simulation of Single and Multiphase Flows Relying on Lagrangian Particle Methods, PhD Thesis (2017). PDF
  • Pesmazoglou, I., Kempf, A., Navarro-Martinez, S., Large Eddy Simulation of Particle Aggregation in Turbulent Jets, Journal of Aerosol Science 111 (2017) 1-17.
  • Vascellari, M., Tufano, G., Stein, O. T., Kronenburg, A., Kempf, A., Scholtissek, A., Hasse, C., A flamelet/progress variable approach for modeling coal particle ignition, Fuel, 201 (2017) 29-38.
  • Tirunagari, R. R., Pettit, M. W., Kempf, A., Pope, S., A simple approach for specifying velocity inflow boundary conditions in simulations of turbulent opposed-jet flows, Flow Turbul. Combust. 98:1 (2017) 131-153.
  • Sikalo, N., Development and Application of a Genetic Algorithm-based Tool for the Reduction and Optimization of Reaction Kinetic Mechanisms, PhD Thesis (2017). PDF
  • Proch, F., Highly-resolved numerical simulation of turbulent premixed and stratified combustion under adiabatic and non-adiabatic conditions with tabulated chemistry, PhD Thesis (2017). PDF
  • Rieth, M., Proch, F., Clements, A. G., Rabaçal, M., Kempf, A., Highly resolved flamelet LES of a semi-industrial scale coal furnace, Proc. Combust. Inst. 36:3 (2017) 3371–3379.
  • Rieth, M., Clements, A. G., Rabaçal, M., Proch, F., Stein, O. T, Kempf, A., Flamelet LES modeling of coal combustion with detailed devolatilization by directly coupled CPD, Proceedings of the Combustion Institute, 36:2 (2017) 2181–2189.
  • Proch, F., Domingo, P., Vervisch, L., Kempf, A.,. Flame resolved simulation of a turbulent premixed bluff-body burner experiment. Part I: Analysis of the reaction zone dynamics with tabulated chemistry. Combust. Flame 180 (2017) 321-339. PDF
  • Proch, F., Domingo, P., Vervisch, L., Kempf, A., Flame resolved simulation of a turbulent premixed bluff-body burner experiment. Part II: A-priori and a-posteriori investigation of sub-grid scale wrinkling closures in the context of artificially thickened flame modeling, Combust. Flame 180 (2017) 340-350. PDF
  • Rittler, A., Deng, L., Wlokas, I., Kempf, A., Large eddy simulations of nanoparticle synthesis from flame spray pyrolysis, Proc. Combust. Inst. 36:1 (2017) 1077-1087.
  • Sellmann, J., Lai, J., Kempf, A., Chakraborty, N., Flame surface density based modelling of head-on quenching of turbulent premixed flames, Proc. Combust. Inst. 36:2 (2017) 1817-1825.
  • Inanc, E., Nguyen, T., Kaiser, S., Kempf, A., High-resolution LES of a starting jet, Computers & Fluids, 140 (2016) 435-449. PDF
  • Rieth, M., Proch, F., Rabaçal, M., Franchetti, B. M., Marincola, F. C., Kempf, A., Flamelet LES of a semi-industrial pulverized coal furnace, Combust. Flame, 173 (2016) 39-56.
  • Rittler, A., Proch, F., Kempf, A., LES of the Sydney piloted spray flame series with the PFGM/ATF approach and different sub-filter models, Combust. Flame 162:4 (2015) 1575-1598.
  • Proch, F., Pettit, M. W. A., Ma, T., Rieth, M., Kempf, A., Investigations on the Effect of Different Subgrid Models on the Quality of LES Results, in Direct and Large-Eddy Simulation IX, Springer, Cham (2015) 141-147.
  • Sikalo, N., Hasemann, O., Schulz, C., Kempf, A., Wlokas, I., A Genetic Algorithm–Based Method for the Optimization of Reduced Kinetics Mechanisms, International Journal of Chemical Kinetics 47:11 (2015) 695-723.
  • Butz, D., Gao, Y., Kempf, A., Chakraborty, N., Large eddy simulations of a turbulent premixed swirl flame using an algebraic scalar dissipation rate closure. Combust. Flame 162:9 (2015) 3180-3196.
  • Proch, F., Kempf, A., Modeling heat loss effects in the large eddy simulation of a model gas turbine combustor with premixed flamelet generated manifolds, Proc. Combust. Inst. 35:3 (2015) 3337-3345.
  • Fiorina, B., Mercier, R., Kuenne, G., Ketelheun, A., Avdić, A., Janicka, J., Geyer, D., Dreizler, A., Alenius, E., Duwig, C., Trisjono, P., Kleinheinz, K., Kang, S., Pitsch, H., Proch, F., Marincola, F., Kempf, A., Challenging modeling strategies for LES of non-adiabatic turbulent stratified combustion, Combust. Flame, 162:11 (2015) 4264-4282.
  • Cavallo-Marincola, F., Ma, T., Kempf, A.M., Large Eddy Simulations of the Darmstadt Turbulent Stratified Flame Series, Proc. Combust. Inst. 34 (2013) 1307-1315.
  • Franchetti, B.M., Cavallo Marincola, F., Navarro-Martinez, S, Kempf, A.M, Large Eddy Simulation of a Pulverised Coal Jet Flame, Proc. Combust. Inst. 34 (2013) 2419-2426.
  • Pettit, M., Coriton, B., Gomez, A., Kempf, A.M., Large-Eddy Simulation and Experiments on Non-Premixed Highly Turbulent ‘Opposed Jet’ Flows, Proc. Combust. Inst., 33 (2011) 1391-1399.
  • Franchetti, B.M., Cavallo Marincola, F., Navarro-Martinez, S, Kempf, A.M, Large Eddy Simulation of a Pulverised Coal Jet Flame, Proc. Combust. Inst. 34 (2013) 2419-2426.
  • Stein, O.T., Olenik, G., Kronenburg, A., Cavallo-Marincola, F., Franchetti, B.M., Kempf, A.M., Ghiani, M., Vascellari, M., Hasse, C., Towards comprehensive coal combustion modelling for LES (2012), in: Flow, Turbulence and Combustion.
  • Wlokas, I., Faccinetto, A., Tribalet, B., Schulz, C., Kempf, A.M., Mechanism of iron oxide formation from iron pentacarbonyl doped hydrogen/oxygen flames, Accepted by Int J Chemical Kinetics (2013).
  • Rabhiou, A., Kempf, A., Heyes, A., Oxidation of divalent rare earth phosphors for thermal history sensing, Sensors and Actuators B 177 (2013) 124-130.
  • Nguyen, T.M., Kempf, A.M., LES of an IC-engine; An approach for moving boundaries in IC engine simulations, abstract accepted for the European Combustion Meeting, Lund, Sweeden, 2013.
  • Janas, P., Schild, M., Kaiser, S., Kempf, A.M., Numerical simulation of flame front propagation in a spark ignition engine, abstract accepted for the European Combustion Meeting, Lund, Sweeden, 2013.
  • Wlokas, I., Faccinetto, A., Tribalet, B., Schulz, C., Kempf, A., Mechanism of iron oxide formation from iron pentacarbonyl doped hydrogen/oxygen flames, accepted for publication by Int J Chemical Kinetics (2013).
  • Rabhiou, A., Kempf, A., Heyes, A., Oxidation of divalent rare earth phosphors for thermal history sensing, Sensors and Actuators B 177 (2013) 124-130.

all Publications