Research

Our research work is focused on numerical simulation of reactive flows. For this, numerical models have been developed to decribe and simulate turbulent combustion of multiphase flows, reaction kinetics and reaktion mechanism, combustion engines and nanoparticle synthesis. Additional information can be found on the specific research pages.

 

Turbulent Combustion
The research on the field of turbulent combustion serves for the development of methods and models which are useful for a better understanding of the complex processes in combustion and interaction in flows and combustion.

Multiphase flows
Multiphase flows, comprising a continuous phase and a dispersed phase, e.g. gaseous phase-liquid phase (spray-combustion) or gaseous phase-solid body (coal combustion, nanoparticle synthesis) were described by using methods such as Euler-Lagrange or Euler-Euler. Thereby, models were developed which decribe the interaction between phases themselves as well as the reactions of the individual phases.

Reaction Kinetics and Reaction Mechanism
To exactly describe the chemical and physical processes inside flames and synthetic reactors, a modelling of detailed reaction kinetic is essential. A Reaction Mechanism is the succession of elementary reactions, which occur in a monecular level and decribes the complete chemical process. Due to the significant computational costs, a direct application of these complex reaction mechanisms in the simulation of reactive flows is not possible. For this reason the reduction of these mechanisms is a focus of our research interests.

Combustion Engines
For the development of efficient and low-emisson combustion engines, a detailed decription and a strong understanding of internal engine flow and reaction processes is of vital importance. Finite volume methods on the basis of programs which are source open, will be used to simulate these programs. In addition models were developed, which are only for an accurate description of internal engine processes.

Nanoparticle Synthesis
Nanoparticles serve as a basis of various innovative materials. At the IVG, methods were developed to produce ones particles by using gaseous processes inside flow reactors. The modeling and simulation of the particle charged and chemical reacting flow is indispensable to understand the proceses, to design reactors and to solve problems in scaling. These models and methods were developed at the Chair in Simulation of Reactive Flows.

Tomographic Reconstruction Techniques
 

Entwicklung von Verfahren zur modularen Energierückgewinnung aus metallurgischen Prozessen (E-Rück), EN/3018

Durch die Energiewende und die daraus resultierenden Impulse neue Quellen zur Stromerzeugung zu erschließen gewinnt die Nutzung von Abfallwärme zunehmend an Bedeutung. Prozesse der Stahlerzeugung und -umformung sind bereits bei 700-1000°C abgeschlossen, wie in Abbildung 1 exemplarisch dargestellt. Die Restwärme der Produkte wird ungenutzt in die Umwelt entlassen und ist somit eine brachliegende Ressource mit einem hohen exergetischen Potential. Schon eine teilweise Umwandlung in elektrische Energie führte zu einer erheblichen Vermeidung äquivalenter Stromerzeugung aus primären Energieträgern. Das ökonomische Potenzial lässt daher einen großen Markt für entsprechende Strahlungswärmewandler erwarten. 

Selected Publications

  • Rieth, M., Chen, J.-Y., Menon, S., Kempf, A.M., (accepted 2018) A Hybrid Flamelet Finite-Rate Chemistry Approach for Efficient LES with a Transported FDF, Combustion and Flame.
  • Tufano, G., Stein, O. T., Wang, B., Kronenburg, A., Rieth, M., Kempf, A. M., (accepted 2018) Coal particle volatile combustion and flame interaction. Part II: Effects of particle Reynolds number and turbulence, Fuel.
  • J. T. Lipkowicz, I. Wlokas, A. M. Kempf, Analysis of mild ignition in a shock tube using a highly resolved 3D-LES and high-order shock-capturing schemes, Shock Waves (2018) 1-11. LINK

  • Cifuentes L., Dopazo C., Anurag S., Chakraborty N. & Kempf A.M., Analysis of Flame Curvature Evolution in a Turbulent Premixed Bluff Body Burner. Physics of Fluids (2018)

  • Cifuentes L., Kempf A.M. & Dopazo C., Local entrainment velocity in a premixed turbulent annular jet flame. Proceedings of the Combustion Institute (2018)

  • Grauer, S. J., Unterberger, A., Rittler, A., Daun, K. J., Kempf, A. M., Mohri, K., Instantaneous 3D flame imaging by backgrounded-orientated schlieren tomography, Combust. Flame 196 (2018) 284 - 299.
  • Rieth, M., Rabacal, M., Kempf, A., Kronenburg, A., Stein, O. T., Carrier-phase DNS of biomass particle ignition and volatile burning in a turbulent mixing layer, Chemical Engineering Transactions 65 (2018) 37-42 PDF
  • Gruhlke, P., Mahiques, E. I., Dederichs, S., Proch, F., Beck, C., Kempf, A., Prediction of CO and NOx Pollutants In A Stratified Bluff Body Burner, Journal of Engineering for Gas Turbines and Power 140:10 (2018) 101502-101502-9.
  • Janbazi, H., Hasemann, O., Schulz, C., Kempf, A., Wlokas, I., Peukert, S., Response surface and group additivity methodology for estimation of thermodynamic properties of organosilanes, International Journal of Chemical Kinetics (2018) 1–10.
  • Tufano, G., Stein, O. T., Wang, B., Kronenburg, A., Rieth, M., Kempf, A., Coal particle volatile combustion and flame interaction. Part I: Characterization of transient and group effects, Fuel 229 (2018) 262-269.
  • Rieth, M., Kempf, A., Kronenburg, A., Stein, O. T., Carrier-phase DNS of pulverized coal particle ignition and volatile burning in a turbulent mixing layer, Fuel 212 (2018) 364-374.
  • Rittler, A., Large eddy simulation of nanoparticle synthesis from spray flames, PhD Thesis (2017). PDF
  • Rieth, M. Large Eddy and Direct Numerical Simulation of Single and Multiphase Flows Relying on Lagrangian Particle Methods, PhD Thesis (2017). PDF
  • Pesmazoglou, I., Kempf, A., Navarro-Martinez, S., Large Eddy Simulation of Particle Aggregation in Turbulent Jets, Journal of Aerosol Science 111 (2017) 1-17.
  • Vascellari, M., Tufano, G., Stein, O. T., Kronenburg, A., Kempf, A., Scholtissek, A., Hasse, C., A flamelet/progress variable approach for modeling coal particle ignition, Fuel, 201 (2017) 29-38.
  • Tirunagari, R. R., Pettit, M. W., Kempf, A., Pope, S., A simple approach for specifying velocity inflow boundary conditions in simulations of turbulent opposed-jet flows, Flow Turbul. Combust. 98:1 (2017) 131-153.
  • Sikalo, N., Development and Application of a Genetic Algorithm-based Tool for the Reduction and Optimization of Reaction Kinetic Mechanisms, PhD Thesis (2017). PDF
  • Proch, F., Highly-resolved numerical simulation of turbulent premixed and stratified combustion under adiabatic and non-adiabatic conditions with tabulated chemistry, PhD Thesis (2017). PDF
  • Rieth, M., Proch, F., Clements, A. G., Rabaçal, M., Kempf, A., Highly resolved flamelet LES of a semi-industrial scale coal furnace, Proc. Combust. Inst. 36:3 (2017) 3371–3379.
  • Rieth, M., Clements, A. G., Rabaçal, M., Proch, F., Stein, O. T, Kempf, A., Flamelet LES modeling of coal combustion with detailed devolatilization by directly coupled CPD, Proceedings of the Combustion Institute, 36:2 (2017) 2181–2189.
  • Proch, F., Domingo, P., Vervisch, L., Kempf, A.,. Flame resolved simulation of a turbulent premixed bluff-body burner experiment. Part I: Analysis of the reaction zone dynamics with tabulated chemistry. Combust. Flame 180 (2017) 321-339. PDF
  • Proch, F., Domingo, P., Vervisch, L., Kempf, A., Flame resolved simulation of a turbulent premixed bluff-body burner experiment. Part II: A-priori and a-posteriori investigation of sub-grid scale wrinkling closures in the context of artificially thickened flame modeling, Combust. Flame 180 (2017) 340-350. PDF
  • Rittler, A., Deng, L., Wlokas, I., Kempf, A., Large eddy simulations of nanoparticle synthesis from flame spray pyrolysis, Proc. Combust. Inst. 36:1 (2017) 1077-1087.
  • Sellmann, J., Lai, J., Kempf, A., Chakraborty, N., Flame surface density based modelling of head-on quenching of turbulent premixed flames, Proc. Combust. Inst. 36:2 (2017) 1817-1825.
  • Inanc, E., Nguyen, T., Kaiser, S., Kempf, A., High-resolution LES of a starting jet, Computers & Fluids, 140 (2016) 435-449. PDF
  • Rieth, M., Proch, F., Rabaçal, M., Franchetti, B. M., Marincola, F. C., Kempf, A., Flamelet LES of a semi-industrial pulverized coal furnace, Combust. Flame, 173 (2016) 39-56.
  • Rittler, A., Proch, F., Kempf, A., LES of the Sydney piloted spray flame series with the PFGM/ATF approach and different sub-filter models, Combust. Flame 162:4 (2015) 1575-1598.
  • Proch, F., Pettit, M. W. A., Ma, T., Rieth, M., Kempf, A., Investigations on the Effect of Different Subgrid Models on the Quality of LES Results, in Direct and Large-Eddy Simulation IX, Springer, Cham (2015) 141-147.
  • Sikalo, N., Hasemann, O., Schulz, C., Kempf, A., Wlokas, I., A Genetic Algorithm–Based Method for the Optimization of Reduced Kinetics Mechanisms, International Journal of Chemical Kinetics 47:11 (2015) 695-723.
  • Butz, D., Gao, Y., Kempf, A., Chakraborty, N., Large eddy simulations of a turbulent premixed swirl flame using an algebraic scalar dissipation rate closure. Combust. Flame 162:9 (2015) 3180-3196.
  • Proch, F., Kempf, A., Modeling heat loss effects in the large eddy simulation of a model gas turbine combustor with premixed flamelet generated manifolds, Proc. Combust. Inst. 35:3 (2015) 3337-3345.
  • Fiorina, B., Mercier, R., Kuenne, G., Ketelheun, A., Avdić, A., Janicka, J., Geyer, D., Dreizler, A., Alenius, E., Duwig, C., Trisjono, P., Kleinheinz, K., Kang, S., Pitsch, H., Proch, F., Marincola, F., Kempf, A., Challenging modeling strategies for LES of non-adiabatic turbulent stratified combustion, Combust. Flame, 162:11 (2015) 4264-4282.
  • Cavallo-Marincola, F., Ma, T., Kempf, A.M., Large Eddy Simulations of the Darmstadt Turbulent Stratified Flame Series, Proc. Combust. Inst. 34 (2013) 1307-1315.
  • Franchetti, B.M., Cavallo Marincola, F., Navarro-Martinez, S, Kempf, A.M, Large Eddy Simulation of a Pulverised Coal Jet Flame, Proc. Combust. Inst. 34 (2013) 2419-2426.
  • Pettit, M., Coriton, B., Gomez, A., Kempf, A.M., Large-Eddy Simulation and Experiments on Non-Premixed Highly Turbulent ‘Opposed Jet’ Flows, Proc. Combust. Inst., 33 (2011) 1391-1399.
  • Franchetti, B.M., Cavallo Marincola, F., Navarro-Martinez, S, Kempf, A.M, Large Eddy Simulation of a Pulverised Coal Jet Flame, Proc. Combust. Inst. 34 (2013) 2419-2426.
  • Stein, O.T., Olenik, G., Kronenburg, A., Cavallo-Marincola, F., Franchetti, B.M., Kempf, A.M., Ghiani, M., Vascellari, M., Hasse, C., Towards comprehensive coal combustion modelling for LES (2012), in: Flow, Turbulence and Combustion.
  • Wlokas, I., Faccinetto, A., Tribalet, B., Schulz, C., Kempf, A.M., Mechanism of iron oxide formation from iron pentacarbonyl doped hydrogen/oxygen flames, Accepted by Int J Chemical Kinetics (2013).
  • Rabhiou, A., Kempf, A., Heyes, A., Oxidation of divalent rare earth phosphors for thermal history sensing, Sensors and Actuators B 177 (2013) 124-130.
  • Nguyen, T.M., Kempf, A.M., LES of an IC-engine; An approach for moving boundaries in IC engine simulations, abstract accepted for the European Combustion Meeting, Lund, Sweeden, 2013.
  • Janas, P., Schild, M., Kaiser, S., Kempf, A.M., Numerical simulation of flame front propagation in a spark ignition engine, abstract accepted for the European Combustion Meeting, Lund, Sweeden, 2013.
  • Wlokas, I., Faccinetto, A., Tribalet, B., Schulz, C., Kempf, A., Mechanism of iron oxide formation from iron pentacarbonyl doped hydrogen/oxygen flames, accepted for publication by Int J Chemical Kinetics (2013).
  • Rabhiou, A., Kempf, A., Heyes, A., Oxidation of divalent rare earth phosphors for thermal history sensing, Sensors and Actuators B 177 (2013) 124-130.

all Publications

 

Illustration of the Cambridge stratified flame.

Iso-Surface of the layered Cambridge flame.

Description of a reaction path

Mixture fraction in a 4-valve engine, during the intake stroke.

Streamlines and contourplot of the temperature in a laminar low pressure flame reactor.

Ziel2 E-Rück