Forschungsinteressen

  • Partielle Differentialgleichungen
  • Korn Ungleichungen
  • Elastizitätstheorie
  • minimierende Kegel

Publikationen

  • F. Gmeineder, P. Lewintan, P. Neff: Optimal incompatible Korn-Maxwell-Sobolev inequalities in all dimensions, submitted, preprint: arXiv:2206.10373 [math.AP]
  • M.V. d’Agostino, G. Rizzi, H. Khan, P. Lewintan, A. Madeo, P. Neff : The consistent coupling boundary condition for the classical micromorphic model: existence, uniqueness and interpretation of parameters, submitted, preprint:  arXiv:2112.12050 [math.AP]
  • P. Lewintan: Matrix representation of a cross product and related curl-based differential operators in all space dimensions, Open Mathematics 19 (2021), No. 1, 1330–1348. pdf, doi: 10.1515/math-2021-0115, hal-03233545
  • M. M. Saem, P. Lewintan, P. Neff: On in-plane drill rotations for Cosserat surfaces, Proc. R. Soc. A 477: 20210158 (2021), doi: 10.1098/rspa.2021.0158, arXiv:2102.10356 [math.DG]
  • P. Lewintan, S. Müller, P. Neff: Korn inequalities for incompatible tensor fields in three space dimensions with conformally invariant dislocation energy, Calc. Var. 60, 150 (2021). pdf, doi: 10.1007/s00526-021-02000-x , arXiv:2011.10573 [math.AP]
  • P. Lewintan, P. Neff: L^p -trace-free version of the generalized Korn inequality for incompatible tensor fields in arbitrary dimensions, Z. Angew. Math. Phys. 72, 127 (2021). pdf, doi: 10.1007/s00033-021-01550-6, hal-02967603
  • I.-D. Ghiba, M. Bîrsan, P. Lewintan, P. Neff: A constrained Cosserat shell model up to order O(h⁵): Modelling, existence of minimizers, relations to classical shell models and scaling invariance of the bending tensor, J Elast 146 (2021), 83–141, doi: 10.1007/s10659-021-09851-7, arXiv:2010.1430[math.AP]
  • P. Lewintan, P. Neff: L^p-trace-free generalized Korn inequalities for incompatible tensor fields in three space dimensions, Proc. Roy. Soc. Edinburgh Sect. A (2021), 1–32. pdf, doi: 10.1017/prm.2021.62, arXiv:2004.05981[math.AP]
  • I.-D. Ghiba, M. Bîrsan, P. Lewintan, P. Neff: The isotropic Cosserat shell model including terms up to O(h⁵). Part II: Existence of minimizers, J Elast 142 (2020), 263–290, doi: 10.1007/s10659-020-09795-4, arXiv:2003.08594[math.AP]
  • I.-D. Ghiba, M. Bîrsan, P. Lewintan, P. Neff: The isotropic Cosserat shell model including terms up to O(h⁵). Part I: Derivation in matrix notation, J Elast 142 (2020), 201–262, doi: 10.1007/s10659-020-09796-3, arXiv:2003.00549[math-ph]
  • P. Lewintan, P. Neff: L^p -versions of generalized Korn inequalities for incompatible tensor fields in arbitrary dimensions with p-integrable exterior derivative, C.R., Math. 359, 6 (2021); 749-755. pdf, doi: 10.5802/crmath.216, arXiv:1912.11551[math.AP]
  • P. Lewintan, P. Neff: Nečas-Lions lemma revisited: An L^p -version of the generalized Korn inequality for incompatible tensor fields, Math. Meth. Appl. Sci. 44 (2021); 11392-11403. pdf, doi:10.1002/mma.7498, arXiv:1912.08447[math.AP]
  • P. Lewintan:  On α-minimizing hypercones, Rend. Sem. Mat. Univ. Padova 143 (2020), 227–246. doi: 10.4171/RSMUP/45, arXiv: 1901.06872[math.DG]
  • F. Bozorgnia, P. Lewintan: Decay estimates for solutions of evolutionary damped p-Laplace equations, Electron. J. Differential Equations (2021), No. 73, 1–9. pdf, url, arXiv:1905.03597 [math.AP]
  • S. Eberle, P. Lewintan: Ein Vorschlag zur konsistenten Einführung der Ableitung mit der Zoom-in-Methode. Math. Semesterber. 66 (2019), no. 2, 203–217. pdf, doi: 10.1007/s00591-019-00250-7
  • P. Lewintan: Geometric Calculus of the Gauss Map. Adv. Appl. Clifford Algebras 27 (2017), no. 1, 503–521. pdf, doi: 10.1007/s00006-016-0727-1
  • P. Lewintan: On Bernstein-type theorems. In: J. van der Veken et al. (eds.), Pure and Applied Differential Geometry - PADGE 2012, In memory of Franki Dillen. Shaker Verlag, 2013, 168–174. pdf
  • P. Lewintan: The ”Wrong Minimal Surface Equation” does not have the Bernstein property. Analysis 31 (2011), no. 4, 299–303. pdf, doi:  10.1524/anly.2011.1137

ORCID 
    

​MathSciNet
       zbMATH     arXiv      HAL     cvgmt    RG    scopus   googleScholar

Lehrbuch

  • A. Lewintan, P. Lewintan: Einführung in die Differential- und in die Differenzengleichungen, Logos Verlag Berlin 2022. doi: 10.30819/5448, pdf

Poster

  • P. Lewintan: Geometric Calculus of the Gauss map, May 2019, Poster

Dissertation

Über α-minimierende Hyperkegel

Diplomarbeit

Über Theoreme vom Bernstein'schen Typ 

Lehre

  • Ergänzungsvorlesung zur Analysis II  (SoSe 2021) online
  • Ergänzungsvorlesung zur Analysis I  (WiSe 20/21) online, Livemitschnitte:
  1. Ergänzung (12. November 2020): Absolutbetrag
  2. Ergänzung (19. November 2020): voll. Induktion
  3. Egänzung (26. November 2020): Äquivalenzrelationen, Teil 1
  4. Ergänzung (3. Dezember 2020): Äquivalenzrelationen, Teil 2
  5. Ergänzung (10. Dezember 2020): Äquivalenzrelationen, Teil 3
  6. Ergänzung (17. Dezember 2020): Überabzählbarkeit
  7. Ergänzung (7. Januar 2021): Folgen, Teil 1
  8. Ergänzung (14. Januar 2021): Folgen, Teil 2
  9. Ergänzung (21. Januar 2021): Umordnung von Reihen
  10. Ergänzung (28. Januar 2021): Rd
  11. Ergänzung (4. Februar 2021): Stetigkeit
  12. Ergänzung (11. Februar 2021): Unstetigkeitsverhalten
  • Ergänzungsvorlesung zur Analysis II  (SoSe 2020) online, Livemitschnitte:
  1. Ergänzung (23. April 2020): Stetige nirgends differenzierbare Funktion
  2. Ergänzung (30. April 2020): gleichmäßige Konvergenz
  3. Ergänzung (7. Mai 2020): trigonometrische Funktionen und Potenzreihen
  4. Ergänzung (14. Mai 2020): Metriken
  5. Ergänzung (28. Mai 2020): Stetigkeit
  6. Ergänzung (4. Juni 2020): Integration
  7. Ergänzung (18. Juni 2020): Ableitungen in höheren Dimensionen
  8. Ergänzung (25. Juni 2020): Gradientenfeld
  9. Ergänzung (2. Juli 2020): Extremwerte
  10. Ergänzung (9. Juli 2020): Maximumprinzip für harmonische Funktionen
  11. Ergänzung (16. Juli 2020): implizite Funktionen
  • Ergänzungsvorlesung zur Analysis I (WiSe 19/20)
  • Vorlesung (SoSe2018): Analytische Geometrie in vektorieller Darstellung

Creative Commons License
The presentations are licensed under a Creative Commons Attribution 4.0 International License.

Dr. rer. nat. Peter Lewintan

Tel. +49(0)201/183-6236

peter.lewintan(at)uni-due.de

Room WSC-S-4.11

Foto-lew

Kontakt

Universität Duisburg-Essen
Fakultät für Mathematik
Mathematik-Carrée
Thea-Leymann-Straße 9
45127 Essen

Sprechstunde

Bei Anwesenheit immer