Liste der Publikationen

Artikel (Auswahl):

 

  1. O. Sander, P. Neff, M. Birsan (2016): Numerical treatment of a geometrically nonlinear planar Cosserat shell model, Computational Mechanics , vol.57 (2016), 817-841.

  2. P. Neff, M. Birsan, F. Osterbrink (2015): Existence theorem for geometrically nonlinear Cosserat micropolar model under uniform convexity requirements, Journal of Elasticity , vol.121 (2015), 119-141.

  3. T. Sadowski, M. Birsan, D. Pietras (2015): Multilayered and FGM structural elements under mechanical and thermal loads. Part I: Comparison of finite elements and analytical models, Archives of Civil and Mechanical Engineering, vol. 15 (2015), 1180-1192.

  4. M. Birsan, P. Neff (2014): Existence of minimizers in the geometrically non-linear 6-parameter resultant shell theory with drilling rotations, Mathematics and Mechanics of Solids,   vol. 19 (2014), 376-397. arXiv:1210.1251 , abstract , pdf .

  5. M. Birsan, P. Neff (2014): Shells without drilling rotations: A representation theorem in the framework of the geometrically nonlinear 6-parameter resultant shell theory, International Journal of Engineering Science, vol. 80 (2014), 32-42.

  6. M. Birsan, P. Neff (2014): On the characterization of drilling rotation in the 6-parameter resultant shell theory, In: W. Pietraszkiewicz, J. Górski (eds.), Shells Structures: Theory and Applications, vol. 3, Taylor & Francis, pp. 61-64, 2013.   arXiv:1303.1979

  7. M. Birsan, P. Neff (2013): Existence theorems in the geometrically non-linear 6-parameter theory of elastic plates, Journal of Elasticity, vol. 112, 185-198 , arXiv:1205.0894 , abstract , pdf .

  8. M. Birsan, P. Neff, J. Lankeit (2013): Sum of squared logarithms - An inequality relating positive definite matrices and their matrix logarithm, Journal of Inequalities and Applications 2013 : 168, DOI: 10.1186/1029-242X-2013-168. arXiv:1301.6604

  9. M. Birsan, T. Sadowski, L. Marsavina, E. Linul, D. Pietras (2013): Mechanical behavior of sandwich composite beams made of foams and functionally graded materials, International Journal of Solids and Structures, vol. 50, 519-530.

  10. M. Birsan, H. Altenbach (2013): On the Cosserat model for thin rods made of thermoelastic materials with voids, Discrete and Continuous Dynamical Systems - Series S, Vol. 6, No. 6, 1473-1485.

  11. M. Birsan, T. Sadowski, D. Pietras (2013): Thermoelastic deformations of cylindrical multi-layered shells using a direct approach, Journal of Thermal Stresses, vol. 36, 749-789.

  12. M. Birsan, P. Neff (2012): On the equations of geometrically nonlinear elastic plates with rotational degrees of freedom, Ann. Acad. Rom. Sci. Ser. Math. Appl., vol. 4,  97-103. pdf

  13. M. Birsan, H. Altenbach, T. Sadowski, V. Eremeyev, D. Pietras (2012): Deformation analysis of functionally graded beams by the direct approach, Composites Part B: Engineering, vol. 43, 1315-1328.

  14. H. Altenbach, M. Birsan, V.A. Eremeyev (2012): On a thermodynamic theory of rods with two temperature fields, Acta Mechanica, vol. 223, 1583-1596.

  15. M. Birsan, H. Altenbach (2012): The Korn-type inequality in a Cosserat model for thin thermoelastic porous rod, Meccanica, vol. 47, 789–794.

  16. M. Birsan, H. Altenbach (2011): Theory of thin thermoelastic rods made of porous materials. Archive of Applied Mechanics, vol. 81, 1365-1391.

  17. M. Birsan, H. Altenbach (2011): On the theory of porous elastic rods. International Journal of Solids and Structures, vol. 48, 910-924.

  18. M. Birsan, H. Altenbach (2011): On the dynamical theory of thermoelastic simple shells. Zeitschrift für Angewandte Mathematik und Mechanik (ZAMM), vol. 91, 443-457.

  19. M. Birsan (2011): On a problem of Truesdell for anisotropic elastic shells, Anal. Sci. Univ. Iasi, ser. Matematica, vol. 57, 91-110.

  20. M. Birsan, H. Altenbach (2010): A mathematical study of the linear theory for orthotropic elastic simple shells. Mathematical Methods in the Applied Sciences, vol. 33, 1399-1413.

  21. M. Birsan (2010): Thermal stresses in anisotropic cylindrical elastic shells. Mathematical Methods in the Applied Sciences, vol. 33, 799-810.

  22. M. Birsan (2009): On the problems of Almansi and Michell for anisotropic Cosserat elastic shells. Archives of Mechanics, vol. 61, 195-227.

  23. M. Birsan (2009): On Saint-Venant's problem for anisotropic, inhomogeneous, cylindrical Cosserat elastic shells. International Journal of Engineering Science, vol. 47, 21-38.

  24. M. Birsan (2009): Thermal stresses in cylindrical Cosserat elastic shells. European Journal of Mechanics A/Solids, vol. 28, 94-101.

  25. M. Birsan (2008): On the dynamic deformation of porous Cosserat linear-thermoelastic shells. Zeitschrift für Angewandte Mathematik und Mechanik (ZAMM), vol. 88, 74-78.

  26. M. Birsan (2008): Inequalities of Korn's type and existence results in the theory of Cosserat elastic shells. Journal of Elasticity, vol. 90, 227-239.

  27. M. Birsan (2007): On the theory of loaded general cylindrical Cosserat elastic shells. International Journal of Solids and Structures, vol. 44, 7399-7419.

  28. M. Birsan (2007): On Saint-Venant's principle in the theory of Cosserat elastic shells. International Journal of Engineering Science, vol. 45, 187-198.

  29. M. Birsan (2007): On the bending equations for elastic plates with voids. Mathematics and Mechanics of Solids, vol. 12 , 40-57.

  30. M. Birsan (2006): On a thermodynamic theory of porous Cosserat elastic shells. Journal of Thermal Stresses, vol. 29, 879-899.

  31. M. Birsan (2006): On the theory of elastic shells made from a material with voids. International Journal of Solids and Structures, vol. 43, 3106-3123.

  32. M. Birsan (2006): Several results in the dynamic theory of thermoelastic Cosserat shells with voids. Mechanics Research Communications, vol. 33, 157-176.

  33. M. Birsan (2005): Minimum energy characterizations for the solution of Saint-Venant’s problem in the theory of shells. Journal of Elasticity, vol. 81, 179-204.

  34. M. Birsan (2005): Saint-Venant’s problem for Cosserat shells with voids. International Journal of Solids and Structures, vol. 42, 2033-2057.

  35. M. Birsan (2004): The solution of Saint-Venant’s problem in the theory of Cosserat shells. Journal of Elasticity, vol. 74, 185-214.

  36. M. Birsan (2003): A bending theory of porous thermoelastic plates. Journal of Thermal Stresses, vol. 26, 67-90.

  37. M. Birsan (2000): On a theory of porous thermoelastic shells, Anal. Sci. Univ. Iasi, ser. Matematica, vol. 46, 111-130.

 

Kapitel in Büchern oder Artikel in Tagungsbänden (Auswahl):

 

  1. M. Birsan, P. Neff (2016): On the dislocation density tensor in the Cosserat theory of elastic shells. In: K. Naumenko, M. Aßmus (eds.), Advanced Methods of Continuum Mechanics for Materials and Structures, Ser. Advanced Structured Materials 60, Springer Singapore, pp. 391-414, 2016.

  2. H. Altenbach, M. Birsan, V.A. Eremeyev (2013): Cosserat-type rods. In: H. Altenbach, V.A. Eremeyev (eds.), Generalized Continua from the Theory to Engineering Applications, Springer Wien, CISM (Udine), pp. 179-248, 2013.

  3. M. Birsan, H. Altenbach (2011): Analysis of the deformation of multi-layered orthotropic cylindrical elastic shells using the direct approach. In: H. Altenbach, V.A. Eremeyev (eds.), Shell-like Structures: Non-classical Theories and Applications, Ser. Advanced Structured Materials 15, Springer-Verlag Berlin Heidelberg, pp. 29-52, 2011.

  4. M. Birsan, H. Altenbach (2010): Continuous dependence and instability in the linear theory of elastic shells. In: W. Pietraszkiewicz, I. Kreja (eds.), Shells Structures: Theory and Applications, vol. 2, Taylor & Francis, London, pp. 55-58, 2010.

  5. M. Birsan (2008): On a problem of thermal stresses in the theory of Cosserat elastic shells with voids. In: G. Jaiani, P. Podio-Guidugli (eds.), Proceedings of IUTAM Symposium on Relations of Shells, Plate, Beam, and 3D Models, Springer Science + Business Media, pp. 67-76, 2008.

  6. M. Birsan (2007): On the use of Korn's type inequalities in the existence theory for Cosserat elastic surfaces with voids. In: O. Carja, I.I. Vrabie (eds.), Applied Analysis and Differential Equations, World Scientific, Singapore, pp. 11-20, 2007.

 

Bücher:

 

  1. M. Birsan (2009): Linear Cosserat Elastic Shells: Mathematical Theory and Applications. Matrix Rom, Bukarest, 230 pp.

  2. M. Birsan (2007): Deformation of elastic porous plates: A mathematical study (in Romanian), Matrix Rom, Bukarest, 131 pp.

 

 

Prof. Dr.
Mircea Birsan

 

mircea.birsan@uni-due.de

Raum WSC-W-4.15 (in Essen)

Raum BC 509 (in Duisburg)

Birsan2



Kontakt

Universität Duisburg-Essen
Fakultät für Mathematik
Mathematik-Carrée
Thea-Leymann-Straße 9
45127 Essen

Sprechstunde

in Duisburg (BC 509):
dienstags 10:15 - 11:15 Uhr