Forschung

Kooperationen

Universität Duisburg-Essen Center for Nanointegration

Forschungsschwerpunkte

Elektronische Eigenschaften von Heterostrukturen

Elektronen an Festkörperoberflächen oder in dünnen Schichten können in ihrer Bewegung begrenzt sein. Durch diese Einschränkung können sie nur noch bestimmte quantenmechanische Zustände einnehmen.

Die veränderten elektronischen Eigenschaften aufgrund dieser niedrigdimensionalen Elektronen untersuchen wir, indem wir die Thermospannung messen, die entlang der Tunnelstrecke eines Rastertunnelmikroskops auftritt.

In unseren Experimenten können wir zeigen, dass sich das aus der Festkörperphysik wohlbekannte Phänomen der Entstehung von Bandlücken bei geeigneten Probensystemen direkt auf der Oberfläche beobachten lässt. Hierzu untersuchen wir mit dem Rastertunnelmikroskop (STM) monoatomar dünne Salzinseln auf ausgewählten einkristallinen Edelmetallen. Kristallographisch ist dieses Wachstum mehr als knifflig, da die kubische Anordnung der Natrium- und Chlorionen des Salzkristalls geometrisch nicht zur hexagonalen Oberfläche der Edelmetalle passt. Es kommt zu mechanischen Verspannungen, die nur durch die Ausbildung eines Verzerrungsgitters gelöst werden können. Dieses eindimensionale periodische Gitter erinnert in seiner Form an ein Waschbrett, bestehend aus parallelen in gleichmäßigem Abstand angeordneten Streben. Ziel unserer aktuellen Forschung ist es, der Wirkung dieses „Waschbretts“ auf die quantenmechanische Wellenfunktion der Elektronen auf den Grund zu gehen und die interessante und komplexe Physik zu verstehen.

Kontaktelektrifizierung

Kontaktelektrifizierung und Reibungselektrizität sind allgegenwärtige Phänomene, die uns auch im täglichen Leben häufig begegnen, z.B. wenn man einen Türgriff berührt und einen leichten elektrischen Schlag bekommt. Überraschenderweise sind die zugrundeliegenden Prozesse noch immer nicht vollständig verstanden.

In unserer Gruppe haben wir eine neue experimentelle Technik ausgearbeitet, die es ermöglicht den Ladungstransfer zwischen zwei Objekten, die in Kontakt kommen, präzise zu analysieren. Grundlage dafür sind neu entwickelte elektronische Verstärker, die es erlauben sehr kleine Ladungen auf einer Zeitskala von Mikrosekunden zu messen. Zur Analyse der Kontaktelektrifizierung werden in dem Experiment kleine Kugeln mit einem Durchmesser von einem Millimeter aus einer Höhe von ein paar Zentimetern auf eine Platte fallen gelassen, so dass sie mehrfach aufspringen. Wenn man dabei die induzierte elektrisch Ladung misst, kann man genau bestimmen, welche Ladungen bei der Berührung übertragen werden.

Das Foto zeigt das Innere des experimentellen Aufbaus. Auf der linken Seite sieht man das Rad, das dazu benutzt wird, die Kugeln an den Ausgangspunkt einer in dem Bild verdeckten Kugelbahn zu bringen. Die Kugeln fallen dann durch ein kleines Loch in einen Plattenkondensator und springen dann mehrfach auf der unteren Platte. Diese ist mit einem elektronischen Verstärker verbunden, der es erlaubt, die kleine in der Platte induzierte Ladung zu messen.

Terahertz STM

Zwei gegeneinander verzögerte THz-Pulse (blau) induzieren ultraschnelle Spannungstransienten in dem Tunnelübergang, um die Dynamik einzelner Nanoobjekte (grün) zu analysieren.

Ultraschnelle Dynamik adsorbierter Nanoobjekte

Aufgrund seiner hohen räumlichen Auflösung ist die Rastertunnelmikroskopie (STM) die Methode der Wahl einzelne Nanoobjekte auf Oberflächen zu untersuchen, bzw. zu adressieren oder zu manipulieren. Viele solcher Nanoobjekte, sein es Atome, Moleküle oder Nanostrukturen, zeigen eine reiche Dynamik, wie z.B. Ladungstransfer, Spin- oder Schwingungsanregung oder auch Konformationsänderungen, die meist zu schnell abläuft, um sie mit einem konventionellen STM auflösen zu können.  Dies ist darin begründet, dass die eigentliche Messgröße, der Tunnelstrom, relativ klein ist und damit verbunden der Nachweis relativ langsam ist (mit einer Zeitauflösung in der Größenordnung von Millisekunden).