Publications of the Reichenberger Group

 

Peer-Reviewed Publications

  1. S. Siebeneicher, S. Reichenberger, C. Hengst, F. Dornhaus, B. Wittek, and S. Barcikowski, “Accepted Manuscript,” ChemCatChem, 2023, accepted, doi: 10.1002/cctc.202300563.
     
  2. S. X. Liang, M. E. R. Reusmann, K. Loza, S. Zerebecki, L. C. Zhang, Z. Jia, and S. Reichenberger*, “Laser-generated nanoparticles from Fe-based metallic glass in water and its amorphization control by pulsed laser processing,” Mater. Today Chem., 2023, 30, doi: 10.1016/j.mtchem.2023.101544.
     
  3. K. Lau, F. Niemann, K. Abdiaziz, M. Heidelmann, Y. Yang, Y. Tong, M. Muhler, S. Reichenberger*, and S. Barcikowski, “Differentiating between Acidic and Basic Surface Hydroxyls on Metal Oxides by Fluoride Substitution : A Case Study on Blue TiO 2 from Laser Defect Engineering,” Angew. Chem. Int. Ed., 2023, e202213968, doi: https://doi.org/10.1002/anie.202213968.
     
  4. M. Spellauge, M. Tack, R. Streubel, M. Miertz, K. S. Exner, S. Reichenberger, S. Barcikowski, H. P. Huber, and A. R. Ziefuss, “Photomechanical Laser Fragmentation of IrO2 Microparticles for the Synthesis of Active and Redox-Sensitive Colloidal Nanoclusters,” Small, 2023, 19, 10, doi: 10.1002/smll.202206485.
     
  5. A. Rezvani, Y. Li, S. Neumann, O. Anwar, D. Rafaja, S. Reichenberger, and D. Segets, “Stability of Binary Colloidal Mixtures of Au Noble Metal and ZnS Semiconductor Nanoparticles,” SSRN Electron. J., 2023, 1–28, doi: 10.2139/ssrn.4488269.
     
  6. T. Fromme, L. K. Tintrop, S. Reichenberger, T. C. Schmidt, and S. Barcikowski, “Impact of Chemical and Physical Properties of Organic Solvents on the Gas and Hydrogen Formation during Laser Synthesis of Gold Nanoparticles,” ChemPhysChem, 2023, doi: 10.1002/cphc.202300089.
     
  7. T. Lange, S. Reichenberger, S. Ristig, M. Rohe, J. Strunk, S. Barcikowski, and R. Schlögl, “Zinc sulfide for photocatalysis: White angel or black sheep?,” Prog. Mater. Sci., 2022, 124, 100865, doi: 10.1016/j.pmatsci.2021.100865.
     
  8. A. Plech, A. R. Ziefuß, M. Levantino, R. Streubel, S. Reich, and S. Reichenberger*, “Low Efficiency of Laser Heating of Gold Particles at the Plasmon Resonance: An X-ray Calorimetry Study,” ACS Photonics, 2022, doi: 10.1021/acsphotonics.2c00588.
     
  9. S. Zerebecki, K. Schott, S. Salamon, J. Landers, H. Wende, E. Budiyanto, H. Tüysüz, S. Barcikowski, and S. Reichenberger*, “Gradually Fe-Doped Co3O4 Nanoparticles in 2-Propanol and Water Oxidation Catalysis with Single Laser Pulse Resolution,” J. Phys. Chem. C, 2022, 126, 36, 15144–15155, doi: 10.1021/acs.jpcc.2c01753.
     
  10. S. Reichenberger*, “Freezing crystallographic defects into nanoparticles : The development of pulsed laser defect engineering in liquid ( PUDEL ),” Sci. CHINA Physics, Mech. Astron. Mech. Astron., 2022, 65, 7, doi: https://doi.org/10.1007/s11433-021-1864-0.
     
  11. S. Zerebecki, S. Salamon, J. Landers, Y. Yang, Y. Tong, E. Budiyanto, D. Waffel, M. Dreyer, S. Saddeler, T. Kox, S. Kenmoe, E. Spohr, S. Schulz, M. Behrens, M. Muhler, H. Tüysüz, R. K. Campen, H. Wende, S. Reichenberger*, and S. Barcikowski, “Engineering of Cation Occupancy of CoFe2O4 Oxidation Catalysts by Nanosecond, Single‐Pulse Laser Excitation in Water,” ChemCatChem, 2022, doi: 10.1002/cctc.202101785.
     
  12. F. Stein, S. Kohsakowski, R. Martinez-Hincapie, S. Reichenberger, C. Rehbock, V. Colic, D. Guay, and S. Barcikowski, “Disproportional surface segregation in ligand-free gold-silver alloy solid solution nanoparticles, and its implication for catalysis and biomedicine,” Faraday Discuss., 2022, doi: 10.1039/d2fd00092j.
     
  13. S. Alinejad, J. Quinson, G. K. H. Wiberg, N. Schlegel, D. Zhang, Y. Li, S. Reichenberger, S. Barcikowski, and M. Arenz, “Electrochemical Reduction of CO2 on Au Electrocatalysts in a Zero‐Gap, Half‐Cell Gas Diffusion Electrode Setup:a Systematic Performance Evaluation and Comparison to an H‐cell Setup,” ChemElectroChem, 2022, 202200341, 1–11, doi: 10.1002/celc.202200341.
     
  14. J. Du, J. Quinson, D. Zhang, B. Wang, G. K. H. Wiberg, R. K. Pittkowski, J. Schröder, S. B. Simonsen, J. J. K. Kirkensgaard, Y. Li, S. Reichenberger, S. Barcikowski, K. M. Ø. Jensen, and M. Arenz, “Nanocomposite Concept for Electrochemical in Situ Preparation of Pt-Au Alloy Nanoparticles for Formic Acid Oxidation,” JACS Au, 2022, 2, 7, 1757–1768, doi: 10.1021/jacsau.2c00335.
     
  15. S.-X. Liang, L.-C. Zhang, S. Reichenberger, and S. Barcikowski, “Design and perspective of amorphous metal nanoparticles from laser synthesis and processing,” Phys. Chem. Chem. Phys., 2021, 23, 19, 11121–11154, doi: 10.1039/d1cp00701g.
  16. J. Johny, Y. Li, M. Kamp, O. Prymak, S. Liang, T. Krekeler, M. Ritter, L. Kienle, C. Rehbock, S. Barcikowski, and S. Reichenberger*, “Laser-generated high entropy metallic glass nanoparticles as bifunctional electrocatalysts,” Nano Res., 2021, doi: 10.1007/s12274-021-3804-2.
     
  17. K. Lau, P. Schühle, S.-X. Liang, F. de Kock, J. Albert, and S. Reichenberger*, “Laser-generated InOx/ZrO2 catalysts for CO2 hydrogenation: Role of in-situ fragmentation and ripening control,” ACS Appl. Energy Mater., 2021, 4, 9, 9206–9215, doi: 10.1021/acsaem.1c01465.
     
  18. M. Labusch, S. Puthenkalam, E. Cleve, S. Barcikowski, and S. Reichenberger*, “Pore penetration of porous catalyst supports by in-situ-adsorbed, agglomeration-quenched nanoparticles from pulsed laser ablation in supercritical CO2,” J. Supercrit. Fluids, 2021, 169, 105100, doi: 10.1016/j.supflu.2020.105100.
     
  19. S.-X. Liang, S. Salamon, S. Zerebecki, L.-C. Zhang, Z. Jia, H. Wende, S. Reichenberger, and S. Barcikowski, “A laser-based synthesis route for magnetic metallic glass nanoparticles,” Scr. Mater., 2021, 203, 114094, doi: 10.1016/j.scriptamat.2021.114094.
     
  20. E. Budiyanto, S. Zerebecki, C. Weidenthaler, T. Kox, S. Kenmoe, E. Spohr, S. DeBeer, O. Rüdiger, S. Reichenberger, S. Barcikowski, and H. Tüysüz, “Impact of Single-Pulse, Low-Intensity Laser Post-Processing on Structure and Activity of Mesostructured Cobalt Oxide for the Oxygen Evolution Reaction,” ACS Appl. Mater. Interfaces, 2021, 13, 44, DOI: 10.1021/acsami.1c08034, doi: 10.1021/acsami.1c08034.
     
  21. T. Lange, S. Reichenberger, M. Rohe, M. Bartsch, L. Kampermann, J. Klein, J. Strunk, G. Bacher, R. Schlögl, and S. Barcikowski, “Alumina-Protected, Durable and Photostable Zinc Sulfide Particles from Scalable Atomic Layer Deposition,” Adv. Funct. Mater., 2021, 31, 14, 2009323, doi: 10.1002/adfm.202009323.
     
  22. P. Schühle, S. Reichenberger, G. Marzun, and J. Albert, “Slurry Phase Hydrogenation of CO2 to Methanol Using Supported In2O3 Catalysts as Promising Approach for Chemical Energy Storage,” Chemie-Ingenieur-Technik, 2021, 93, 4, 585–593, doi: 10.1002/cite.202000109.
     
  23. V. Amendola, D. Amans, Y. Ishikawa, N. Koshizaki, S. Scirè, G. Compagnini, S. Reichenberger, and S. Barcikowski, “Room‐Temperature Laser Synthesis in Liquid of Oxide, Metal‐Oxide Core‐Shells, and Doped Oxide Nanoparticles,” Chem. – A Eur. J., 2020, 26, 42, 9206–9242, doi: 10.1002/chem.202000686.
     
  24. B. Gökce, C. Rehbock, V. Ramesh, S. Kohsakowski, T. Hupfeld, S. Reichenberger, and S. Barcikowski, Handbook of Laser Micro- and Nano-Engineering,. 2020. doi: 10.1007/978-3-319-69537-2_31-1.
     
  25. S. Zerebecki, S. Reichenberger*, and S. Barcikowski, “Continuous-Flow Flat Jet Setup for Uniform Pulsed Laser Postprocessing of Colloids,” J. Phys. Chem. A, 2020, 124, 11125–11132, doi: 10.1021/acs.jpca.0c08787.
     
  26. S. Dittrich, S. Kohsakowski, B. Wittek, C. Hengst, B. Gökce, S. Barcikowski, and S. Reichenberger*, “Increasing the Size-Selectivity in Laser-Based g / h Liquid Flow Synthesis of Pt and PtPd Nanoparticles for CO and NO Oxidation in Industrial Automotive Exhaust Gas Treatment Benchmarking,” Nanomaterials, 2020, 10, 1582, doi: doi:10.3390/nano10081582.
     
  27. A. R. Ziefuß, I. Haxhiaj, S. Müller, M. Gharib, O. Gridina, C. Rehbock, I. Chakraborty, B. Peng, M. Muhler, W. J. Parak, S. Barcikowski, and S. Reichenberger*, “Origin of Laser-Induced Colloidal Gold Surface Oxidation and Charge Density, and Its Role in Oxidation Catalysis,” J. Phys. Chem. C, 2020, 124, 38, 20981–20990, doi: 10.1021/acs.jpcc.0c06257.
     
  28. O. R. Schade, F. Stein, S. Reichenberger, A. Gaur, E. Saraçi, S. Barcikowski, and J. Grunwaldt, “Selective Aerobic Oxidation of 5- ( Hydroxymethyl ) furfural over Heterogeneous Silver-Gold Nanoparticle Catalysts,” 2020, doi: 10.1002/adsc.202001003.
     
  29. A. R. Ziefuss, S. Reich, S. Reichenberger, M. Levantino, and A. Plech, “In situ structural kinetics of picosecond laser-induced heating and fragmentation of colloidal gold spheres,” Phys. Chem. Chem. Phys., 2020, 22, 9, 4993–5001, doi: 10.1039/c9cp05202j.
     
  30. S. Kohsakowski, F. Seiser, J. P. Wiederrecht, S. Reichenberger, T. Vinnay, S. Barcikowski, and G. Marzun, “Effective size separation of laser-generated, surfactant-free nanoparticles by continuous centrifugation,” Nanotechnology, 2020, 31, 9, 1–11, doi: 10.1088/1361-6528/ab55bd.
     
  31. X. Fan, S. Zerebecki, R. Du, R. Hübner, G. Marzum, G. Jiang, Y. Hu, S. Barcikowki, S. Reichenberger, and A. Eychmüller, “Promoting the Electrocatalytic Performance of Noble Metal Aerogels by Ligand‐Directed Modulation,” Angew. Chemie, 2020, doi: 10.1002/ange.201913079.
     
  32. S. Barcikowski, V. Amendola, M. Lau, G. Marzun, C. Rehbock, S. Reichenberger, D. Zhang, and B. Gökce, Handbook of Laser Synthesis & Processing of Colloids. 2019. doi: 10.17185/duepublico/70584.
     
  33. S. Reichenberger, G. Marzun, M. Muhler, S. Barcikowski, M. Muhler, S. Barcikowski, and M. Muhler, “Perspective of Surfactant-Free Colloidal Nanoparticles in Heterogeneous Catalysis,” ChemCatChem, 2019, 11, 18, 4489–4518, doi: 10.1002/cctc.201900666.
     
  34. S. Kohsakowski, R. Streubel, I. Radev, V. Peinecke, S. Barcikowski, G. Marzun, and S. Reichenberger*, “First PEM fuel cell based on ligand-free, laser-generated platinum nanoparticles,” Appl. Surf. Sci., 2019, 467–468, October 2018, 486–492, doi: 10.1016/j.apsusc.2018.10.145.
     
  35. A. Jindal, K. Tashiro, H. Kotani, T. Takei, S. Reichenberger, G. Marzun, S. Barcikowski, T. Kojima, and Y. Yamamoto, “Excellent Oxygen Reduction Reaction Performance in Self-Assembled Amyloid-β/Platinum Nanoparticle Hybrids with Effective Platinum-Nitrogen Bond Formation,” ACS Appl. Energy Mater., 2019, 2, 9, 6536–6541, doi: 10.1021/acsaem.9b01103.
     
  36. S. Kohsakowski, P. Pulisova, D. Mitoraj, S. Neubert, J. Biskupek, U. Kaiser, S. Reichenberger, G. Marzun, and R. Beranek, “Electrostatically Directed Assembly of Nanostructured Composites for Enhanced Photocatalysis,” Small Methods, 2019, 3, 8, 1800390, doi: 10.1002/smtd.201800390.
     
  37. M. Labusch, A. P. A. Cunha, S. F. Wirtz, S. Reichenberger, E. Cleve, D. Söffker, and S. Barcikowski, “Acoustic emission control avoids fluence shifts caused by target runaway during laser synthesis of colloids,” Appl. Surf. Sci., 2019, 479, January, 887–895, doi: 10.1016/j.apsusc.2019.02.080.
     
  38. E. Bertin, A. Münzer, S. Reichenberger, R. Streubel, T. Vinnay, H. Wiggers, C. Schulz, S. Barcikowski, and G. Marzun, “Durability study of platinum nanoparticles supported on gas-phase synthesized graphene in oxygen reduction reaction conditions,” Appl. Surf. Sci., 2019, 467–468, 1181–1186, doi: 10.1016/j.apsusc.2018.10.061.
     
  39. M. Lau, S. Reichenberger, I. Haxhiaj, S. Barcikowski, and A. M. Müller, “Mechanism of Laser-Induced Bulk and Surface Defect Generation in ZnO and TiO2 Nanoparticles: Effect on Photoelectrochemical Performance,” ACS Appl. Energy Mater., 2018, 1, 10, 5366–5385, doi: 10.1021/acsaem.8b00977.
     
  40. A. R. Ziefuß, S. Reichenberger, C. Rehbock, I. Chakraborty, M. Gharib, W. J. Parak, and S. Barcikowski, “Laser Fragmentation of Colloidal Gold Nanoparticles with High-Intensity Nanosecond Pulses is Driven by a Single-Step Fragmentation Mechanism with a Defined Educt Particle-Size Threshold,” J. Phys. Chem. C, 2018, 122, 38, 22125–22136, doi: 10.1021/acs.jpcc.8b04374.
     
  41. W. Dong, S. Reichenberger, S. Chu, P. Weide, H. Ruland, S. Barcikowski, P. Wagener, and M. Muhler, “The effect of the Au loading on the liquid-phase aerobic oxidation of ethanol over Au/TiO2 catalysts prepared by pulsed laser ablation,” J. Catal., 2015, 330, 497–506, doi: 10.1016/j.jcat.2015.07.033.
     
  42. L. Schade, S. Franzka, K. Dzialkowski, S. Hardt, H. Wiggers, S. Reichenberger, P. Wagener, and N. Hartmann, “Resonant photothermal laser processing of hybrid gold/titania nanoparticle films,” Appl. Surf. Sci., 2015, 336, 48–52, doi: 10.1016/j.apsusc.2014.09.118.
     

Reviews and book contributions
(extracted from the list above)

[1]         T. Lange, S. Reichenberger, S. Ristig, M. Rohe, J. Strunk, S. Barcikowski, and R. Schlögl,
             “Zinc sulfide for photocatalysis: White angel or black sheep?,” Prog. Mater. Sci., 2022, 124,
             100865, doi: 10.1016/j.pmatsci.2021.100865.

[2]         S.-X. Liang, L.-C. Zhang, S. Reichenberger, and S. Barcikowski, “Design and perspective
              of amorphous metal nanoparticles from laser synthesis and processing,”
              Phys. Chem. Chem. Phys., 2021, 23, 19, 11121–11154, doi: 10.1039/d1cp00701g.

[3]         V. Amendola, D. Amans, Y. Ishikawa, N. Koshizaki, S. Scirè, G. Compagnini,
              S. Reichenberger, and S. Barcikowski, “Room‐Temperature Laser Synthesis in
              Liquid of Oxide, Metal‐Oxide Core‐Shells, and Doped Oxide Nanoparticles,”
              Chem. – A Eur. J., 2020, 26, 42, 9206–9242, doi: 10.1002/chem.202000686.

[4]         B. Gökce, C. Rehbock, V. Ramesh, S. Kohsakowski, T. Hupfeld, S. Reichenberger,
              and S. Barcikowski, Handbook of Laser Micro- and Nano-Engineering,. 2020.
              doi: 10.1007/978-3-319-69537-2_31-1.

[5]         S. Barcikowski, V. Amendola, M. Lau, G. Marzun, C. Rehbock, S. Reichenberger, D. Zhang,
              and B. Gökce, Handbook of Laser Synthesis & Processing of Colloids. 2019.
              doi: 10.17185/duepublico/70584.

[6]         S. Reichenberger, G. Marzun, M. Muhler, and S. Barcikowski, “Perspective of Surfactant‐Free
              Colloidal Nanoparticles in Heterogeneous Catalysis,” ChemCatChem, 2019, 11, 18, 4489–4518,
              doi: 10.1002/cctc.201900666.