# Publications

## Benchmark Collection SPP 1748:

J. Schröder, T. Wick, S. Reese, P. Wriggers, R. Müller, S.

Kollmannsberger, M. Kästner, A. Schwarz, M. Igelbüscher, N. Viebahn, H.

R. Bayat, S. Wulfinghoff, K. Mang, E. Rank, T. Bog, D. d'Angella, M.

Elhaddad, P. Hennig, A. Düster, W. Garhuom, S. Hubrich, M. Walloth, W.

Wollner, Ch. Kuhn, T. Heister;

A selection of benchmark problems in solid mechanics and applied mathematics,

Archives of Computational Methods in Engineering (ARCO), Aug 2020, accepted

## Hybrid discretizations in solid mechanics for non-linear and non-smooth problems

## 2020:

H. R. Bayat, S. Rezaei, A. Rajaei Harandi, T. Brepols, S. Reese,

*About the influence of neglecting locking effects on the failure behavior at the interface.*

PAMM, Submitted June 26, 2020, 2020.

## 2019:

## 2018:

## 2017:

## Structure Preserving Adaptive Enriched Galerkin Methods for Pressure-Driven 3D Fracture Phase-Field Models

## 2020:

## 2019:

## 2018:

## Robust and Efficient Finite Element Discretizations for Higher-Order Gradient Formulations

## 2020:

J. Riesselmann and J. Ketteler and M. Schedensack and D. Balzani,

Rot-free finite elements for gradient-enhanced formulations at finite strains,

PAMM Proc. Appl. Math. Mech., V. Bach and H. Fassbender, 2020, Submitted for publication.

J. Riesselmann, J. Ketteler, M. Schedensack, D. Balzani.

*Rot-free mixed finite elements for gradient elasticity at finite strains.*

2020. Submitted.

## 2019:

Riesselmann, J. and Ketteler, J.W. and Schedensack, M. and Balzani, D.

C0 continuous finite elements for gradient elasticity at finite strains,

Proc. of 8th GACM Colloq. on Comp. Mech., pages 27-30, 2019.

D. Gallistl., M. Schedensack.

*Taylor–Hood discretization of the Reissner–Mindlin plate.*

Submitted for publication

J. Riesselmann, J. Ketteler. M. Schedensack, D. Balzani.

*Rot-free finite elements for gradient-enhanced formulations at finite strains.*

PAMM Proc. Appl. Math. Mech., editors: V. Bach and H. Fassbender, 2019.

Submitted for publication.

## Adaptive isogeometric modeling of propagating strong discontinuities in heterogeneous materials

## 2020:

P. Henning, D. Peterseim.

*Sobolev gradient flow for the Gross-Pitaevskii eigenvalue problem: global convergence and computational efficiency.*

SIAM Journal on Numerical Analysis, Vol. 58, No. 3, pages 1744-1772, 2020.

## 2019:

## 2018:

## 2017:

P. Morgenstern.

*Mesh Refinement Strategies for the Adaptive Isogeometric Method. PhD thesis.*

Rheinische Friedrich-Wilhelms-Universität Bonn, 2017.

T. Linse, P. Hennig, M. Kästner, R. De Borst.

*An analysis of convergence in phase-field models for brittle fracture.*

submitted to: International Journal of Solids and Structures, 2017.

A. C. Hansen-Dörr, P. Hennig, M. Kästner, K. Weinberg.

*A numerical analysis of the fracture toughness in phase-field modelling of adhesive fracture.*

submitted to: Proceedings in Applied Mathematics and Mechanics.

D. Gallistl, D. Peterseim.

*Computation of local and quasi-local effective diffusion tensors and connections to the mathematical theory of homogenization.*

SIAM Multiscale Modeling & Simulation, Vol. 15, No. 4, pages 1530-1552, 2017.

## 2016:

## 2015:

## Finite element approximation of functions of bounded variation and application to models of damage, fracture and plasticity

## 2020:

## 2018:

## 2017:

R. Rossi, M. Thomas.

*From nonlinear to linear elasticity in a coupled rate-dependent/rate-independent system for brittle
delamination.*

Accepted in INDAM-Springer series: Symposium on Trends in Applications of Mathematics to Mechanics, 2017.

## 2016:

## Foundation and Application of Generalized Mixed FEM Towards Nonlinear Problems in Solid Mechanics

## 2020:

Bringmann, P.

Adaptive least-squares finite element method with optimal convergence rates

Dissertation, Humboldt-Universität zu Berlin,

Mathematisch-Naturwissenschaftliche Fakultät, 2020

## 2019:

## 2018:

## 2017:

## 2016:

## High-order immersed-boundary methods in solid mechanics for structures generated by additive processes

## 2020:

## 2019:

## 2018:

## 2017:

A. Düster, E. Rank, B. Szabo.

*The p-Version of the Finite Element and Finite Cell Methods.*

Encyclopedia of Computational Mechanics, volume 2, pages 1–35, 2017.

S. Kollmannsberger, A. Özcan, M.Carraturo, N. Zander, E. Rank.

*A hierarchical computational model for moving thermal loads and phase changes with applications to Selective Laser Melting.*

Preprint, 2017.

## 2016:

## 2015:

Hubrich, S. and Joulaian, M. and Düster, A.,

Numerical integration in the finite cell method based on moment-fitting,

Proceedings of 3rd ECCOMAS Young Investigators Conference, 6th GACM Colloquium, pages 1-4, 2015

## Hybrid discontinuous Galerkin methods in solid mechanics

## 2018:

## 2017:

A. Matei, S. Sitzmann, K. Willner, B. Wohlmuth.

*A mixed variational formulation for a class of contact problems in viscoelasticity.*

Submitted, 2017.

## 2016:

## 2015:

## Isogeometric and stochastic collocation methods for nonlinear probabilistic multiscale problems in solid mechanics

## 2020:

## 2019:

## 2018:

## 2017:

## 2016:

## 2015:

## First-order system least squares finite elements for finite elasto-plasticity

## 2018:

## 2017:

F. Bertrand, M. Moldenhauer, G. Starke.

*A Posteriori Error Estimation for Planar Linear Elasticity by Stress Reconstruction.*

SIAM Journal on Numerical Analysis, submitted.

## 2016:

## Advanced Finite Element Modeling of 3D Crack Propagation by a Phase Field Approach

## 2020:

## 2018:

## 2017:

## 2016:

C. Kuhn, T. Noll, R. Müller.

*On phase field modeling of ductile fracture. *

GAMM- Mitteilungen, 2016.

## Novel finite element technologies for anisotropic media

## 2019:

## 2018:

## 2017:

P. Wriggers, B. Hudobivnik, J. Schröder.

*Finite and virtual element formulations for large strain anisotropic material with inextensive fibers*.

in Multiscale Modeling of Heterogeneous Structures, eds. J. Soric and P. Wriggers, Lecture Notes in Applied and Computational Mechanics, Springer, 2017.

P. Wriggers, B. Hudobivnik, J. Korelc.

*Efficient Low Order Virtual Elements for Anisotropic Materials at Finite Strains*.

in Advances in Computational Plasticity, 2017.

N. Viebahn, J. Schröder, P. Wriggers, F. Auricchio

*Challenges of stability analysis using mixed FEM*

Proceedings in Applied Mathematics and Mechanics, submitted

## 2016:

## Large-scale simulation of pneumatic and hydraulic fracture with a phase-field approach

## 2017:

C. Bilgen, A. Kopanicakova, R. Krause, K. Weinberg.

*A phase-field approach to conchoidal fracture.*

Under review at Meccanica, 2017.

T. Dally, K. Weinberg, C. Bilgen.

*Cohesive elements or phase-field fracture: Which method is better for reliable analyses in dynamic fracture?*

Submitted to: Engineering Fracture Mechanics, 2017.

C. Bilgen, A. Kopanicakova, R. Krause, K. Weinberg.

*A phase-field approach to pneumatic fracture.*

submitted to: Proceedings in Applied Mathematics and Mechanics, 2017.

## 2016:

## A novel smooth discretization approach for elasto-plastic contact of bulky and thin structures

## 2018:

## 2017:

A. Seitz, W.A. Wall, A. Popp.

*A computational approach for thermo-elasto-plastic frictional contact based on a monolithic formulation employing non-smooth nonlinear complementarity functions.*

submitted to: Advanced Modeling and Simulation in Engineering Sciences, 2017.

C. Meier, M.J. Grill, W.A. Wall, A. Popp.

*Geometrically exact beam elements and smooth contact schemes for the modeling of fiber-based materials and structures.*

submitted to: International Journal of Solids and Structures, 2017.