• Archaea, a brief introduction
    Since their discovery as a third domain of life by Carl Woese and colleagues (Woese and Fox 1977, PNAS 74, 5088-90) beside Bacteria and Eukarya Archaea have not only served to study adaptation processes to extreme growth conditions. Being an important third and comparative lineage, they were also instrumental in studying the evolution and characteristics of central cellular functions. [more]
  • Biochemistry and Physiology
    Many of the proteins of the CCM of T. tenax (about 22; partly in collaboration with R. Hensel) and other hyperthermophiles, either identified by classical reversed genetics or new genomics-based methods, were expressed in Escherichia coli, purified and the predicted activity was confirmed by enzymatic studies [6-10, 13, 17, 20, 23, 25, 26]. [more]
  • Transcription and transcription regulation: The archaeal model system
    Since there are only three homologs to eukaryal general transcription factors (GTFs) present in Archaea, and because of similar promoter organisation, archaeal transcription is generally accepted to provide a simpler model of the eukaryal transcription. In a project in the Research Training Group ("Transcription, Chromatin Structure and DNA Repair in Development and Differentiation", University of Duisburg-Essen) we work on the regulation of basal transcription, addressing the role of multiple transcription factors (TFB), and the identification of transcriptional regulators in T. tenax. [more]