Gerz, F.; Jelali, M.: Towards Reliable Data Augmentation in Machine Learning: Practices to Prevent Data Leakage. Smart Agricultural Technology, 2025, accepted.
Gerz, F.; Schneider, M.G.; Jelali, M.: Integration of Vision Transformer Networks in YOLOv8 for Object Detection: Comparative Study on Plant Disease Detection. IEEE Access, 2025, submitted.
Rosenthal, R.; Gerz, F.; Al-Shrouf, L.; Jelali, M.: Innovative Machine Learning Based Approach for Reliable and Accurate Measurement of Guide Roll Alignment in Continuous Casting Plants. 11th European Workshop on Structural Health Monitoring, Potsdam, 2024.
Gerz, F.; Jelali, M.; Kuthe, F.: Neuartiges Lehrkonzept für Machine Learning mit Industrial IoT-Plattfom. Teaching and learning draft - Entwurfsmuster. TURN Conference, Köln, Germany, September 13-15, 2023.
Gerz, F.; Al-Shrouf, L.; Jelali, M.: A Comparative Analysis of Concept Drift Detection Methods with a Systematic and Innovative Approach of Method Selection. in: Proc. of the: 14th International Workshop on Structural Health Monitoring (IWSHM), Stanford University, Stanford, CA, September 12-14, 2023, pp. 1571-1578.
Gerz, F.; Bastürk, T.; Kirchhoff, J.; Denker, J.; Al-Shrouf, L.; Jelali, M. : A comparative study and a new industrial platform for decentralized anomaly detection using machine learning algorithms.. IEEE World Congress on Computational Intelligence, Padua, Italy, 2022.