CRC 1093 - Publications Project A1

Area A: Chemical Ligands and Methods

Publications by Prof. Dr. Carsten Schmuck

Project A1:
Protein-recognition by supramolecular ligands from focused combinatorial libraries

L. Bartsch, M. Bartel, J. Iglesias Fernandez, Y. Ruiz Blanco, C. Beuck, J. Briels, A. Gigante, N. Toetsch, P. Bayer , E. Sanchez-Garcia , C. Ottmann, C. Schmuck : Multivalent ligands with tailor-made anion binding motif as stabilizers of protein-protein interactions. Chembiochem. 2019 Jun 6. doi: 10.1002/cbic.201900288.

M. Li, S. Mosel, S. K. Knauer, C. Schmuck: A dipeptide with enhanced anion binding affinity enables cell uptake and protein delivery. Org Biomol Chem. 2018 Mar 28;16(13):2312-2317. doi: 10.1039/c7ob02721d.

M. Ehlers, J. N. Grad, S. Mittal, D. Bier, M. Mertel, L. Ohl, M. Bartel, J. Briels, M. Heimann, C. Ottmann, E. Sanchez-Garcia , D. Hoffmann , C. Schmuck: Rational Design, Binding Studies, and Crystal-Structure Evaluation of the First Ligand Targeting the Dimerization Interface of the 14-3-3ζ Adapter Protein. Chembiochem. 2018 Mar 16;19(6):591-595. doi: 10.1002/cbic.201700588.

P. Jana, K. Samanta, S. Bäcker, E. Zellermann, S. Knauer C. Schmuck: Efficient Gene Transfection through Inhibition of β-Sheet (Amyloid Fiber) Formation of a Short Amphiphilic Peptide by Gold Nanoparticles. Angew Chem Int Ed Engl. 2017, Apr 10. doi: 10.1002/anie.201700713

P. Jana, M. Ehlers, E. Zellermann, K. Samanta, C. Schmuck: pH-Controlled Formation of a Stable ß-Sheet and Amyloid-like Fibers from an Amphiphilic Peptide: The Importance of a Tailor-Made Binding Motif for Secondary Structure Formation. Angew Chem Int Ed Engl. 2016 Dec 5;55(49):15287-15291.

C. Schmuck, K. Samanta, M. Ehlers: Two-Component Self-Assembly: Hierarchical Formation of pH-Switchable Supramolecular Networks by pi-pi Induced Aggregation of Ion Pairs. Chemistry 2016 Aug 30. doi: 10.1002/chem.201603944. Epub ahead of print.

D. Maity, C. Schmuck: Fluorescent Peptide Beacons for the Selective Ratiometric Detection of Heparin. Chemistry 2016 Sep 5;22(37):13156-61. doi: 10.1002/chem.201602240. Epub 2016 Aug 18.

P. Jana, C. Schmuck: Self-Assembly of a Tripodal Triszwitterion Forms a pH-Switchable Hydrogel that Can Reversibly Encapsulate Hydrophobic Guests in Water. Chemistry 2016 Jul 20. doi: 10.1002/chem.201601122. Epub ahead of print.

D. Maity, J. Jiang, M. Ehlers, J. Wu, C. Schmuck: A FRET-enabled molecular peptide beacon with a significant red shift for the ratiometric detection of nucleic acids. Chem Commun (Camb). 2016 May 4;52(36):6134-7. doi: 10.1039/c6cc02138g. Epub 2016 Apr 13. PMID: 27071707

M. Li, M. Ehlers, S. Schlesiger, E. Zellermann, S. K. Knauer, C. Schmuck: Incorporation of a Non-Natural Arginine Analogue into a Cyclic Peptide Leads to Formation of Positively Charged Nanofibers Capable of Gene Transfection. Angew Chem Int Ed Engl . 2015, Nov 27. doi: 10.1002/anie.201508714.

M. Li, S. Schlesiger, S. K. Knauer, C. Schmuck: A Tailor-Made Specific Anion-Binding Motif in the Side Chain Transforms a Tetrapeptide into an Efficient Vector for Gene Delivery. Angew Chem Int Ed Engl. 2015, Jan 22.

H. Y. Kuchelmeister, S. Karczewski, A. Gutschmidt, S. Knauer, C. Schmuck: Utilizing combinatorial chemistry and rational design: peptidic tweezers with nanomolar affinity to DNA can be transformed into efficient vectors for gene delivery by addition of a lipophilic tail. Angew Chem Int Ed Engl. 2013, Dec 23;52(52):14016-20.

Q.-Q. Jiang, L. Bartsch, W. Sicking, P. R. Wich, D. Heider, D. Hoffmann, C. Schmuck: A new approach to inhibit human β-Tryptase by protein surface binding of four-armed peptide ligands with two different sets of arms. Org. Biomol. Chem. 2013, 11, 1631-1639 (selected as a “hot article” by the editor).

H. Y. Kuchelmeister, A. Gutschmidt, S. Knauer, C. Schmuck: Efficient Gene Delivery into Cells by a Surprisingly Small Three-Armed Peptide Ligand. Chem. Sci. 2012, 3, 996-1002.

S. Langolf, U. Machon, M. Ehlers, W. Sicking, T. Schirmeister, C. Büchhold, C. Gelhaus, P. J. Rosenthal, C. Schmuck: Development of Novel Antitrypanosomal and Antiplasmodial Nonpeptidic Cysteine Protease Inhibitors on the Basis of N-protected-Guanidino-Furan and -Pyrrole Building Blocks. Chem.Med.Chem. 2011, 6, 1581-1586.

J. Wu, A. Zawistowski, M. Ehrmann, T. Yi, C. Schmuck: Peptide functionalized Polydiacety-lene Liposomes act as a Fluorescent Turn-On Sensor for Bacterial Lipopolysaccharide. J. Am. Chem. Soc. 2011, 133, 9720–9723.

P. R. Wich, C. Schmuck: Reversible and Non-Competitive Inhibition of β-Tryptase by Pro-tein Surface Binding of Tetravalent Peptide Ligands Identified from a Combinatorial Split-Mix-Library. Angew. Chem. Int. Ed. 2010, 49, 4113-4116.

N. J. V. Lindgren, L. Geiger, J. Razkin, C. Schmuck, L. Baltzer: Downsizing Enzymatic Function by Chemical Methods – Arginine Mimics with Low pKa Values Increase Rates of Hydrolysis of RNA Model Compounds. Angew. Chem. Int. Ed. 2009, 48, 6722-6725.

U. Machon, C. Büchold, M. Stempka, T. Schirmeister, C. Gelhaus, M. Leippe, J. Gut, P. J. Rosenthal, C. Kisker, M. Leyh, C. Schmuck: On-bead screening of a combinatorial fumaric acid derived peptide library yields antiplasmodial cysteine protease inhibitors with unusual peptide sequences. J. Med. Chem. 2009, 52, 5662-5672.

C. Schmuck, P. Wich: The development of artificial receptors for small peptides using com-binatorial approaches. Topics Curr. Chem. 2007, 277, 3-30.

C. Schmuck, P. Wich: Combinatorial receptor finding – large and random vs. small and focused libraries. New J. Chem. 2006, 30, 1377-1385.

More Publications Area A

  • Project A1
  • Project A2
    Natural products as starting structures for the development of supramolecular ligands (Markus Kaiser)
  • Project A3
    Designed copolymers and molecular tweezers for protein surface recognition (Thomas Schrader)
  • Project A5
    Protein-specific nanoparticles for cellular uptake (Matthias Epple)
  • Project A6
    DNA-based nanocontainers for predesigned spatial confinement of proteins (Barbara Saccà)
  • Project A7
    Pareto-optimization of protein-surface targeting supramolecular binders with hetero-avidity (Daniel Hoffmann)
  • Project A8
    Exploring protein-recognition by supramolecular binders with MD and QM/MM methods (Elsa Sánchez-Garcia)
  • Project A9
    Raman spectroscopic monitoring of protein recognition by supramolecular ligands (Sebastian Schlücker)

Biological Targets Publications Area B

  • Project B1
    Supramolecular ligands modulate assembly and function of HtrA proteases (Michael Ehrmann)
  • Project B2
    Probing mechanisms of the Cdc48/p97 segregase with designed supramolecular ligands (Hemmo Meyer)
  • Project B3
    Supramolecular specific inhibitors of intestinal proteases against ischemia/reperfusion injury (Herbert de Groot)
  • Project B4
    Modulation of 14-3-3 protein-protein interactions by supramolecular chemistry (Christian Ottmann)
  • Project B5
    Dissection and modulation of (patho)biological Survivin functions by supramolecular ligands (Shirley Knauer)
  • Project B6
    Targeting centromer recruitment of mitotic regulators by supramolecular ligands (Andrea Musacchio)