Chao Qian, M. Sc.
Kurzlebenslauf
Chao Qian, M.Sc., arbeitet seit April 2020 als wissenschaftlicher Mitarbeiter und Doktorand am Fachgebiet Eingebettete Systeme der Informatik an der Universität Duisburg-Essen. Er erhielt 2015 seinen Bachelor in Electrical Engineering mit einem Fokus auf Wireless Sensor Networks an der University of Electronic Science and Technology of China. Von 2013 bis 2017 entwarf und produzierte er in einer Firma sogenannte Wearables und humanoide Roboter. 2020 erhielt er seinen Master für Embedded Systems mit einem Fokus auf energieeffiziente Systeme der künstlichen Intelligenz an der Universität Duisburg-Essen.
Anschließend hat er bis März 2022 in dem vom Bundesministerium für Bildung und Forschung geförderten Forschungsprojekt „KI-Sprung: LUTNet – Ein energieeffizientes KI-Netz aus elementaren Lookup-Tabellen“ mitgearbeitet. In diesem Projekt wurde untersucht, wie anhand von vortrainierten und voroptimierten Neuronalen Netzen KI-Lösungen entwickelt werden können, die sich auf FPGAs hocheffizient ausführen lassen.
Forschung
Seine Forschung konzentriert sich auf energieeffiziente Deep-Learning-Beschleuniger auf FPGAs, wobei der Schwerpunkt auf der Entwicklung von LSTM-Beschleunigern in RTL unter Verwendung von VHDL liegt. Auf RTL-Ebene umfassen die wichtigsten Methoden Pipelining, Parallelisierung von Operationen und die effiziente Implementierung von Aktivierungsfunktionen. Auf einer höheren Ebene verbessert die arbeitslastbewusste Optimierung die Energieeffizienz weiter, indem sie den Konfigurationsaufwand basierend auf der Intensität der Anwendungsarbeitslast reduziert.
Informatik / AI
47057 Duisburg
Funktionen
-
Wissenschaftliche/r Mitarbeiter/in, Intelligente Eingebettete Systeme
Aktuelle Veranstaltungen
-
WiSe 2025
Vergangene Veranstaltungen (max. 10)
-
SoSe 2025
-
WiSe 2024
-
SoSe 2024
-
WiSe 2023
-
SoSe 2023
-
WiSe 2022
-
SoSe 2021
Die folgenden Publikationen sind in der Online-Universitätsbibliographie der Universität Duisburg-Essen verzeichnet. Weitere Informationen finden Sie gegebenenfalls auch auf den persönlichen Webseiten der Person.
-
Configurable Multi-Layer Perceptron-Based Soft Sensors on Embedded Field Programmable Gate Arrays : Targeting Diverse Deployment Goals in Fluid Flow EstimationIn: Sensors, Jg. 25, 2025, Nr. 1, 83DOI (Open Access)
-
Configuration-aware approaches for enhancing energy efficiency in FPGA-based deep learning acceleratorsIn: Journal of Systems Architecture, Jg. 163, 2025, 103410DOI (Open Access)
-
Exploring energy efficiency of LSTM accelerators : A parameterized architecture design for embedded FPGAsIn: Journal of Systems Architecture, Jg. 152, 2024, 103181DOI (Open Access)
-
Elastic AI : System support for adaptive machine learning in pervasive computing systemsIn: CCF Transactions on Pervasive Computing and Interaction, Jg. 3, 2021, Nr. 3, S. 300 – 328DOI (Open Access)
-
Automating Versatile Time-Series Analysis with Tiny Transformers on Embedded FPGAsIn: IEEE Computer Society Annual Symposium on VLSI: ISVLSI 2025 / ISVLSI 2025: 28th IEEE Computer Society Annual Symposium on VLSI, 6-9 July 2025, Greece / Institute of Electrical and Electronics Engineers (IEEE) (Hrsg.). Piscataway: Institute of Electrical and Electronics Engineers (IEEE), 2025
-
Leveraging Application-Specific Knowledge for Energy-Efficient Deep Learning Accelerators on Resource-Constrained FPGAsIn: Architecture of Computing Systems: Proceedings / 38th International Conference (ARCS 2025); April 22–24, 2025; Kiel, Germany / Tomforde, Sven; Krupitzer, Christian; Vialle, Stéphane; Suarez, Estela; Pionteck, Thilo (Hrsg.). Cham: Springer, 2025, S. 459 – 468
-
FlowPrecision : Advancing FPGA-Based Real-Time Fluid Flow Estimation with Linear QuantizationIn: 2024 IEEE International Conference on Pervasive Computing and Communications Workshops and other Affiliated Events (PerCom Workshops) / IEEE International Conference on Pervasive Computing and Communications Workshops and other Affiliated Events (PerCom Workshops), 11-15 March 2024, Biarritz, France. Piscataway: IEEE, 2024DOI, Online Volltext (Open Access)
-
Idle is the New Sleep : Configuration-Aware Alternative to Powering Off FPGA-Based DL Accelerators During InactivityIn: Architecture of Computing Systems: Proceedings / 37th International Conference, ARCS 2024, Potsdam, Germany, May 14–16, 2024 / Fey, Dietmar; Stabernack, Benno; Lankes, Stefan (Hrsg.). Berlin, Germany: Springer Science and Business Media Deutschland GmbH, 2024, S. 161 – 176
-
Integer-only Quantized Transformers for Embedded FPGA-based Time-series Forecasting in AIoTIn: 2024 IEEE Annual Congress on Artificial Intelligence of Things (AIoT): Proceedings / IEEE Annual Congress on Artificial Intelligence of Things (IEEE AIoT), 24-26 July 2024, Melbourne / IEEE (Hrsg.). New York: IEEE, 2024, S. 38 – 44
-
On-Device Soft Sensors : Real-Time Fluid Flow Estimation from Level Sensor DataIn: Mobile and Ubiquitous Systems: Computing, Networking and Services; Proceedings, Part II / 20th EAI International Conference, MobiQuitous 2023, November 14–17, 2023, Melbourne, Australia / Zaslavsky, Arkady; Ning, Zhaolong; Kalogeraki, Vana; Georgakopoulos, Dimitrios; Chrysanthis, Panos K. (Hrsg.). Cham: Springer Nature, 2024, S. 529 – 537
-
Towards Auto-Building of Embedded FPGA-based Soft Sensors for Wastewater Flow EstimationIn: 2024 IEEE Annual Congress on Artificial Intelligence of Things (AIoT): Proceedings / IEEE Annual Congress on Artificial Intelligence of Things (IEEE AIoT), 24-26 July 2024, Melbourne / IEEE (Hrsg.). New York: IEEE, 2024, S. 248 – 249DOI, Online Volltext (Open Access)
-
ElasticAI : Creating and Deploying Energy-Efficient Deep Learning Accelerator for Pervasive ComputingIn: 2023 IEEE International Conference on Pervasive Computing and Communications Workshops and other Affiliated Events (PerCom Workshops) / PerCom 2023, 13-17 March 2023, Atlanta, GA, USA. Piscataway: IEEE, 2023, S. 297 – 299
-
Enhancing Energy-Efficiency by Solving the Throughput Bottleneck of LSTM Cells for Embedded FPGAsIn: Machine Learning and Principles and Practice of Knowledge Discovery in Databases: International Workshops of ECML PKDD 2022, Grenoble, France, September 19–23, 2022, Proceedings, Part I / International Workshops of ECML PKDD 2022, Grenoble, France, September 19–23, 2022 / Koprinska, Irena; Mignone, Paolo; Guidotti, Riccardo (Hrsg.). Cham: Springer, 2023, S. 594 – 605
-
ElasticAI-Creator: Optimizing Neural Networks for Time-Series-Analysis for On-Device Machine Learning in IoT SystemsIn: Proceedings of the 20th ACM Conference on Embedded Networked Sensor Systems (SenSys 2022) / 20th ACM Conference on Embedded Networked Sensor Systems (SenSys 2022): 6 - 9 November 2022; Boston, USA / Gummeson, Jeremy; Lee, Sunghoon Ivan (Hrsg.). New York: Association for Computing Machinery (ACM), 2022, S. 941 – 946DOI (Open Access)
-
FPGA based low latency, low power stream processing AIIn: 2nd European Workshop on On-Board Data Processing (OBDP2021) / 2nd European Workshop on On-Board Data Processing (OBDP2021), 14-17 June 2021, Online, (Session 3) 2021. Zenodo, 2021DOI (Open Access)
-
In-Situ Artificial Intelligence for Self-∗ Devices : The Elastic AI Ecosystem (Tutorial)In: 2nd IEEE International Conference on Autonomic Computing and Self-Organizing Systems Companion, ACSOS-C 2021: Proceedings / 2nd IEEE International Conference on Autonomic Computing and Self-Organizing Systems Companion, ACSOS-C 2021, Virtual, Washington, 27 September - 1 October 2021. Piscataway: IEEE, 2021, S. 320 – 321
-
Towards Precomputed 1D-Convolutional Layers for Embedded FPGAsIn: Machine Learning and Principles and Practice of Knowledge Discovery in Databases: Proceedings, Part I / International Workshops of ECML PKDD 2021, Virtual Event, September 13-17, 2021 / Kamp, Michael; Koprinska, Irena; Bibal, Adrien; Bouadi, Tassadit; Frénay, Benoît; Galárraga, Luis; Oramas, José.; Adilova, Linara; Krishnamurthy, Yamuna; Kang, Bo; Largeron, Christine; Lijffijt, Jefrey; Viard, Tiphaine; Welke, Pascal; Ruocco, Massimiliano; Aune, Erlend; Gallicchio, Claudio; Schiele, Gregor; Pernkopf, Franz; Blott, Michaela; Fröning, Holger; Schindler, Günther; Guidotti, Riccardo; Monreale, Anna; Rinzivillo, Salvatore; Biecek, Przemyslaw; Ntoutsi, Eirini; Pechenizkiy, Mykola; Rosenhahn, Bodo; Buckley, Christopher; Cialfi, Daniela; Lanillos, Pablo; Ramstead, Maxwell; Verbelen, Tim; Ferreira, Pedro M.; Andresini, Giuseppina; Malerba, Donato; Medeiros, Ibéria; Fournier-Viger, Philippe; Nawaz, M. Saqib; Ventura, Sebastian; Sun, Meng; Zhou, Min; Bitetta, Valerio; Bordino, Ilaria; Ferretti, Andrea; Gullo, Francesco; Ponti, Giovanni; Severini, Lorenzo; Ribeiro, Rita; Gama, João; Gavaldà, Ricard; Cooper, Lee; Ghazaleh, Naghmeh; Richiardi, Jonas; Roqueiro, Damian; Saldana Miranda, Diego; Sechidis, Konstantinos; Graça, Guilherme (Hrsg.). Cham: Springer, 2021, S. 327 – 338
-
An Embedded CNN Implementation for On-Device ECG AnalysisIn: IEEE Annual Conference on Pervasive Computing and Communications Workshops (PerCom) / PerIoT 2020: The Fourtternational Workshop on Mobile and Pervasive Internet of Thingsh In. Piscataway: IEEE, 2020
-
Time to Learn : Temporal Accelerators as an Embedded Deep Neural Network PlatformIn: IoT Streams for Data-Driven Predictive Maintenance and IoT, Edge, and Mobile for Embedded Machine Learning: Second International Workshop, IoT Streams 2020, and First International Workshop, ITEM 2020, Co-located with ECML/PKDD 2020 ; Ghent, Belgium, September 14-18, 2020 ; Revised Selected Papers / 2nd International Workshop on IoT Streams for Data-Driven Predictive Maintenance ; IoT Streams 2020 ; September 14-18, 2020, Ghent, Belgium / Gama, João; Pashami, Sepideh; Bifet, Albert; Sayed-Mouchaweh, Moamar; Fröning, Holger; Pernkopf, Franz; Schiele, Gregor; Blott, Michaela (Hrsg.). Cham: Springer, 2020, S. 256 – 267
-
FPGA based low latency, low power stream processing AI
2nd European Workshop on On-Board Data Processing (OBDP2021), 14-17 June 2021, Online, (Session 3),2021DOI (Open Access)