Herzlich willkommen bei der Arbeitsgruppe Farle

AG Farle

Struktur und Magnetismus nanoskaliger Systeme

Willkommen !

Wir begrüßen Sie sehr herzlich auf den Webseiten der Arbeitsgruppe Farle.
Das Verständnis magnetischer Eigenschaften von nanostrukturierten Materialien ist unsere Herausforderung !

Mehr über die Arbeitsgruppe erfahren ...


Nur deutschsprachig Nur englischsprachigalle
2023-05-02: We welcome Berna Gündogdu Gültepe!
She completed her master degree at Istanbul University and is now a visiting researcher at the AG Farle team to develop a project until 31 October 2023.
Focusing on Heusler alloys, the project includes the preparation and examination of multilayer thin films prepared by flash evaporation of multi-element materials.
2023-04-14: Welcome to Elisavet Papadopoulou
We welcome Elisavet Papadopoulou to our team, who will work on her Master thesis in NanoEngineering. With the help of Dr. Natalia Shkodich, she will focus on the synthesis of novel room temperature CoMnFeNiIn high entropy alloys by High energy ball milling and study their structural, chemical and magnetic properties.
We wish a success in her research and excellent results!
2023-03-30: We welcome Emmanouil Kasotakis (Aristotle University of Thessaloniki) to our team
Within his 5-months ERASMUS-funded internship Emmanouil will learn the basics of vacuum techniques and magnetron sputtering. He will work on deposition of Fe-based ferromagnetic alloys for magnetocaloric and permanent magnet applications. We wish him fruitful and successful stay in our team!
2023-03-29: New publication in "Nano-Structures & Nano-Objects": https://authors.elsevier.com/c/1goto,rVMJnm~Z2444
In our trilateral Armenian, German, Greek project "MaNaCa" we discovered an interesting magnetic composite:Carbon-encapsulated iron-cementite (Fe/Fe3C) magnetic nanoparticles were synthesized by an upscalable solid-state pyrolysis method using iron phthalocyanine as a precursor. The dependence of the structure, morphology and magnetic properties on the pyrolysis conditions is presented. Thenanocomposite contains nanoparticles made of cementite with a small fraction of iron, with an averagediameter of 15 nm embedded in an amorphous carbon matrix.A 3 nm thick graphite shell is formed on the surface of the particles. The volume fraction of α-Feincreases almost linearly on increasing pyrolysis temperature: from 0.5% for the sample synthesizedat 800°C up to 11% for a 900°C pyrolysis temperature, resulting in an increase of the saturationmagnetization from 14.0 to 17.74 Am2/kg and a decrease of the coercivity from 49.34 to 10.74 kA/m
2022-11-07: We welcome Aydan Akyildiz from Gebze Technical University (Turkey)
Aydan will work on her master thesis in our group till February 28, 2023. She studied Physics Engineering at Istanbul Technical University. Her Master thesis will be centered around the magnetic, morphological and structural characterization of Cementite nanoparticles.
2022-10-16: New Publication on a high entropy alloy soft magnet
Soft magnets - that is magnets with a low coercivity - find many applications in sensorics and automobile industry for example. Here a mechanical and environmental robustness is of extreme importance - properties which high entropy alloys provide. Magnetism in such alloys has become a major focus of research in HEAs. In our recent publication we show how to tune magnetic properties in nanocrystalline CoCrFeNiGax (x = 0.5, 1.0) High Entropy Alloys by mechanical treatment.

Einige Eindrücke ...