Herzlich willkommen bei der Arbeitsgruppe Farle

AG Farle

Struktur und Magnetismus nanoskaliger Systeme

Willkommen !

Wir begrüßen Sie sehr herzlich auf den Webseiten der Arbeitsgruppe Farle.
Das Verständnis magnetischer Eigenschaften von nanostrukturierten Materialien ist unsere Herausforderung !

Mehr über die Arbeitsgruppe erfahren ...

News

Nur deutschsprachig Nur englischsprachigalle
2024-02-07: Ausschreibung Doktorand*innen oder PostDoc Stelle
Wir haben die Stelle eines wissenschaftlichen Mitarbeitenden TVL 13 ausgeschrieben: https://www.uni-due.de/karriere/stelle.php?kennziffer=086-24 . Es können sich sowohl Personen, die an einer Promotion interessiert sind, als auch promovierte Personen bewerben, die entweder Ihr eigenes Projekt mitbringen und dieses durch eine(n) weiteren Mitarbeiter*in verstärken wollen, oder selber die PostDoc Position annehmen wollen. Die PostDoc Stelle könnte nach zwei Jahren nach positiver Evaluation um weitere zwei Jahre verlängert werden.
2023-08-17: GRATULATION: MSc. Nanoeng. Inci Nur Sahin

Die Abbildung zeigt die chemische Zusammensetzung eines typischen Partikels.
Wir freuen uns mit Inci über den Abschluss Ihrer Masterarbeit im Studiengang Nanoengineering. Ihre Arbeit und ihr Abschlusskolloquium wurden mit den jeweils bestmöglichen Noten bewertet. Ihre Forschung zu "Optimierter Hyperthermie Ansatz mittels Fe3O4/SiO2/Ni Multischalen Nanoellipsoiden" demonstriert eine neues Konzept zur biomedizinischen Theranostik mit synthetischen Antiferromagneten, die aus Magnetit Halbschalen in einer Siliziumdioxid Hülle bestehen, naßchemisch herstellbar und hoch-skalierbar sind, sowie ohne magnetische Streufelder in biomedizinischen Anwendungen verwendet werden könnten.
Die Arbeit ist hier zu finden.
2023-08-01: Bachelor Thesis: Magnetic Resonance Spectroscopy of (Fe,Mn,Ni)PS3 van der Waals single crystals
Wir begrüßen Moritz Küster in unserem Team. Er forscht seit Juli im Rahmen seine Bachelorarbeit am Verständnis der magnetischen Wechselwirkungen in quasi-2D van der Waals Materialien. Mittels Elektronenspinresonanz als Funktion von Temperatur und Winkel versucht er die intrinsischen magnetischen Phasenübergänge zu identifizieren. Die ersten überraschenden Ergebnisse liegen vor.
2023-09-07: WIR GRATULIEREN !
Nicolas Josten ist am 22.07.2023 kirchlich getraut worden.
Wir freuen uns mit Ihm und seiner Frau und wünschen beiden alles Gute !
2023-08-18: Impressionen der erfolgreichen Begehung zur 2. Förderperiode des SFB/TRR270
Hier geht es zur Website.
2021-10-19: Genauer geht nicht!
Neuartiger Sensor detektiert Wassermoleküle bei kleinsten Konzentrationen

Wissenschaftlerinnen und Wissenschaftlern der Universität Duisburg-Essen und der Staatlichen Technischen Universität Juri Gagarin in Saratow haben einen Sensor entwickelt, der Wassermoleküle erkennt, die auf seine Oberfläche sinken. Basis des Sensors sind MXene, zweidimensionale anorganischen Verbindungen, die aus nur wenige Atome dicken Schichten von Übergangsmetallcarbiden und -nitriden bestehen.

Die relative Luftfeuchtigkeit wird zu einem wichtigen Faktor, der komfortable und sichere Umgebungsbedingungen in der biomedizinischen Verarbeitung, der Mikroelektronik und der Gesundheitsüberwachung definiert und moderne Geräte zu seiner präzisen Kontrolle erfordert. Kommerzielle Sensoren, die auf voluminösen Materialien basieren, sind jedoch nicht in der Lage, sehr niedrige H2O-Konzentrationen (< 50 ppm) zu erkennen, was den Einsatzbereich der Sensoren erheblich einschränkt.

Ein Team von Wissenschaftlern der Universität Duisburg-Essen (Deutschland) und der Staatlichen Technischen Universität Juri Gagarin in Saratow (Russland) geht dieses Problem mit einer völlig neuen Strategie an. Sie verwenden zweidimensionale nanometrische Materialien, die in der Lage sind, kleinste Mengen Wassermoleküle zu erkennen, die auf ihre Oberfläche sinken. "Auf diese Weise verbessert sich die Sensorleistung enorm - die Nachweisgrenze wird weit unter den bisherigen Stand der Technik verschoben. Mehr geht eigentlich nicht.", freut sich die Erstautorin Hanna Pazniak. Sie ist seit Oktober 2020 an der UDE und forscht eigentlich zu magnetischen MAX-Phasen im Sonderforschungsbereich/Transregio 270 - "Hysterese-Design magnetischer Materialien für effiziente Energieumwandlung" in Teilprojekt B02. Die Entwicklung des neuen Sensors ist ein gutes Beispiel dafür, wie Forschung in kurzer Zeit auf andere Gebiete übertragen werden kann.

Die Schlüsselrolle spielten MXene - eine neue Klasse von zweidimensionalen Übergangsmetallcarbiden und -nitriden. Mo2CTx MXenes werden verwendet, die ein riesiges Verhältnis von Oberfläche zu Volumen aufweisen. Die entworfenen Sensoren zeigen eine höhere Empfindlichkeit als andere MXene gegenüber H2O-Dämpfen mit einer Nachweisgrenze von 10 ppm, was der niedrigste bisher bekannte Wert ist. Eine hohe Reproduzierbarkeit und eine Langzeitstabilität für mindestens 6 Monate sind weitere Eigenschaften, die für den Serieneinsatz Voraussetzung sind.

Insgesamt versprechen die herausragenden Eigenschaften der entwickelten Mo2CTx MXene viele mögliche Anwendungen, bei denen eine exakte Hygrometrie Voraussetzung ist. Die Forschungsergebnisse wurden kürzlich in der angesehenen Fachzeitschrift Advanced Materials veröffentlicht (https://doi.org/10.1002/adma.202104878).

Weitere Informationen:
Dr. Hanna Pazniak, Fakultät für Physik, hanna.pazniak@uni-due.de
Prof. Dr. Ulf Wiedwald, Fakultät für Physik, ulf.wiedwald@uni-due.de

Einige Eindrücke ...

Bild:
Bild:
Bild:
Bild:
Bild:
Bild:
Bild:
Bild: