Serie dreier Bilder, die die Verwandlung von reinem Iridium zu einer Borophen-bedeckten Oberfläche zeigen
© UDE/Petrović

Großflächiges 2D-Material hergestellt

Atomschicht schiebt Stufenkanten weg

Ellenbogenmentalität bei einem zweidimensionalen Material: Das hat ein internationales Team unter Federführung des Center for Nanointegration (CENIDE) der UDE kürzlich entdeckt: Den Physikern gelang es, Bor-Schichten entstehen zu lassen, die nur eine Atomschicht hoch sind. Störende Stufenkanten auf der Unterlage schiebt das Material dabei einfach aus dem Weg. Seine Ergebnisse veröffentlichte das Team im Fachmagazin ACS Nano*.

Es ist das Ziel des Teams um UDE-Prof. Michael Horn-von Hoegen, das dünnstmögliche Bor, sogenanntes Borophen, herzustellen. Denn es verspricht Eigenschaften, die den Bau zweidimensionaler Transistoren möglich machen könnten. Die hierzu bisher verwendete Methode der Molekularstrahl-Epitaxie führt zu viel zu kleinen Inselchen, für genauere Untersuchungen und den Einsatz in der Technologie sind jedoch größere Flächen nötig.

In ihrer neu entwickelten Methode der „Segregationsgestützten Epitaxie“ nutzen sie gasförmiges Borazin sowie eine Iridium-Unterlage. Die wesentlichen Bestandteile des Borazin sind Bor- und Stickstoffatome, die in regelmäßigen Sechseck-Strukturen angeordnet sind wie Bienenwaben. Erhitzt man die Iridium-Probe in einer Borazin-haltigen Umgebung, so setzen sich dessen Moleküle an der Oberfläche fest, anschließend verdampft der Stickstoff. Ab 1100°C geht das Bor ins Iridium über, denn dieses kann bei so hohen Temperaturen wie ein Schwamm bis zu einem Viertel seines Volumens an Bor-Atomen zusätzlich aufnehmen. Nachdem das System wieder abgekühlt ist, fällt Borophen – die einatomige Lage aus Bor – an der Oberfläche des Iridium-Kristalls aus. Dabei wächst es nicht über Stufenkanten des darunterliegenden Kristalls hinaus, schiebt diese jedoch in alle Richtungen weg, um selbst so große Flächen zu bilden wie möglich.

Nächster Schritt: Ablösung

Dass es sich bei den Flächen ausschließlich um Bor-Atome handelt und der Stickstoff aus der Probe verschwunden ist, konnten Experten des Interdisciplinary Center for Analytics on the Nanoscale (ICAN) unter der Leitung von UDE-Prof. Frank-J. Meyer zu Heringdorf zweifelsfrei nachweisen.

Wie sich das Borophen nun von der Iridium-Unterlage ablösen lässt, das wollen die Forscher in einem nächsten Schritt untersuchen.

Die Veröffentlichung entstand in Zusammenarbeit mit Physikern der Universität zu Köln sowie des Center of Excellence for Advanced Materials and Sensing Devices in Zagreb (Kroatien).

Im Bild:
Bilderserie, die die Entwicklung von der reinen Iridium-Oberfläche (links, pink) hin zur völlig Borophen-bedeckten Oberfläche der Probe (rechts, gelb-orange) zeigt.

*Originalveröffentlichung:
K.M. Omambac, M. Petrović, P. Bampoulis, C. Brand, M.A. Kriegel, P. Dreher, D. Janoschka, U. Hagemann, N. Hartmann, P. Valerius, T. Michely, F.J. Meyer zu Heringdorf, M. Horn-von Hoegen
„Segregation-Enhanced Epitaxy of Borophene on Ir(111) by Thermal Decomposition of Borazine“
ACS Nano, published online March 24, 2021
https://doi.org/10.1021/acsnano.1c00819

Weitere Informationen:
Prof. Dr. Michael Horn- von Hoegen, Experimentalphysik, Tel. 0203/37 9-1438, horn-von-hoegen@uni-due.de

Redaktion: Birte Vierjahn, Tel. 0203/37 9-8176, birte.vierjahn@uni-due.de

Zurück
-------------------------
Post-Views: 7309